(a+1)^2+ |b-1⼀2 |=0 求代数式6a눀-【a눀b-3(ab눀-2a눀b)】-2ab눀的值

2025-01-07 20:38:17
推荐回答(3个)
回答1:

(a+1)^2+ |b-1/2 |=0
∴a+1=0
b-1/2=0
∴a=-1
b=1/2
6a²-【a²b-3(ab²-2a²b)】-2ab²
=6a²-a²b+3ab²-6a²b-2ab²
=6a²-7a²b+ab²
当a=-1,b=1/2时
原式=6-7/2-1/4
=9/4

回答2:

解:由题意得:
a+1=0
b-1/2=0
a=-1
b=1/2
把a=-1 b=1/2代人6a^2-[a^2b-3(ab^2-2a^2b)]-2ab^2得:
=6-[1/2-3(-1/4-1)]+1/2
=6-1/2-15/4+1/2
=9/4
所以所求代数式的值是9/4

回答3:

墨迹