令S=1*2+2*3+3*4+…+n*(n+1)则n*(n+1)=(1/3)*{n*(n+1)*[(n+2)-(n-1)]}=(1/3)*[n*(n+1)*(n+2)-(n-1)*n*(n+1)]于是S=(1/3)*[1*2*3-0*1*2+2*3*4-1*2*3+…+n*(n+1)*(n+2)-(n-1)*n*(n+1)]=(1/3)*n*(n+1)*(n+2)把n=100代入上式,得1*2+2*3+3*4+.....+100*101的解 为 343400