已知abc=1,求证:1⼀[a대(b+c)]+1⼀[b대(a+c)]+1⼀[c대(a+b)]大于等于3⼀2

2024-12-20 15:32:47
推荐回答(1个)
回答1:

a、b、c应该都是正数吧。

原式=1/[a³(b+c)]+1/[b³(a+c)]+1/[c³(a+b)]=(abc)/[a³(b+c)]+(abc)/[b³(a+c)]+(abc)/[c³(a+b)]
=1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]
根据柯西不等式:
[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·[(1/b+1/c)+(1/a+1/c)+(1/a+1/b)]≥(1/a+1/b+1/c)²
即:[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]·2(1/a+1/b+1/c)≥(1/a+1/b+1/c)²
∴原式=[1/[a²(1/b+1/c)]+1/[b²(1/a+1/c)]+1/[c²(1/a+1/b)]]≥(1/2)(1/a+1/b+1/c)
根据均值不等式:(1/a+1/b+1/c)/3≥[(1/a)·(1/b)·(1/c)]^(1/3)=1,1/a+1/b+1/c≥3
∴原式≥(1/2)×3=3/2