解下列不等式 ①2x⼀(x+1)≥1 ②(2-x)(x^2-2x-3)≤0 ③(3-x^2)⼀(x^2+x-2)≥-1

2024-12-23 10:48:55
推荐回答(5个)
回答1:


2x/(x+1)≥1
2x/(x+1)-1≥0
(x-1)/(x+1)≥0
(x-1)(x+1)≥0,且x+1≠0
故x<-1或x≥1


(2-x)(x^2-2x-3)≤0
(x-2)(x+1)(x-3)≥0
-1≤x≤2或x≥3


(3-x^2)/(x^2+x-2)≥-1
(3-x^2)/(x^2+x-2)+1≥0
(x+1)/(x^2+x-2)≥0
(x+1)/[(x-1)(x+2)]≥0
(x+1)(x-1)(x+2)≥0,且(x-1)(x+2)≠0
所以-2<x≤-1或x>1

回答2:

2x/(x+1)≥1
解:∵x+1≠0
 ∴x≠-1
 ①x+1>0,即x>-1
  2x≥x+1
 ∴x≥1
 ②x+1<0,即x<-1
  2x≤x+1
  x≤1
 ∴x<-1
∴2x/(x+1)≥1的解为:(-∞,-1)U[1,+∞)

(2-x)(x²-2x-3)≤0
解:①2-x=0,即x=2
  0≤0
 ∴x=2
 ②2-x<0,即x>2时
  x²-2x-3≥0
  (x-3)(x+1)≥0
  x≤-1或x≥3
 ∴x≥3
 ③2-x>0,即x<2时
  (x-3)(x+1)≤0
  -1≤x≤3
 ∴-1≤x<2
∴(2-x)(x²-2x-3)≤0的解为:[-1,2]U[3,+∞)

(3-x²)/(x²+x-2)≥-1
解: (x²-3)/(x²+x-2)≤-1
  x²+x-2≠0
  (x+2)(x-1)≠0
 ∴x≠-2或x≠1
 ①x²+x-2>0,即x<-2或x>1时
  x²-3≤x²+x-2
  x≥-1
 ∴x>1
 ②x²+x-2<0,即-2  x²-3≥x²+x-2
  x≤-1
 ∴-2∴(3-x²)/(x²+x-2)≥-1的解为:(-2,-1]U(1,+∞)

回答3:

三个不等式分别进行化简,可得
(x-1)/(x+1)≥0
(x+1)(x-3)(x-2)≥0
(x+1)/[(x+2)(x-1)]≥0
从是否同号考虑,对应可得
①x≥1或x≤-1 ②x≥3或-1≤x≤2 ③x≥1或-2≤x≤-1
对其取交集可得,x∈{(1,2],[3,+∞)}

擦,我还以为解不等式组呢。

回答4:

(1)(x-1)(x+1)>=0且(x+1)≠0,即x>=1或x<-1
(2)(2-x)(x^2-2x-3)<=0,即(x-3)(x-2)(x+1)>=0,故而为x>=3或者1=(3)(x+1)(x+2)(x-1)>=0,(x^2+x-2)≠0,x>1或者-1=

回答5:

1.x<=-1或者.x>=1
2.利用穿针引线法
3.方法类似第二问