证明:
作AF⊥BC于点F
∵AB=AC
∴∠BAF=∠CAF
∵AD=AE
∴∠D=∠AED
∵∠BAC=∠D+∠AED=∠BAF+∠CAF
∴∠BAF=∠D
∴AF∥DE
∵AF⊥BC
∴DE⊥BC
证明:∵AD=AE.
∴∠D=∠AED=(1/2)∠BAC;
又AB=AC,作AF垂直BC于F,则:∠BAF=(1/2)∠BAC.
∴∠D=∠BAF,得DE∥AF.
∵AF⊥BC.
∴DE⊥BC.
设DE与BC交于K,∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠D=∠DEA=∠CEK
∴∠DKB=∠EKC,∵∠DKB+∠EKC=180°,∴∠DKB=∠EKC=90°,∴DE⊥BC
证明:延长DE交BC于H
∵AB=AC
∴∠B=∠C
∵AD=AE
∴∠D=∠AED
∵∠BAC+∠B+∠C=180°,又∠BAC=∠D+∠AED
∴2∠D+2∠B=180°
∴∠B+∠D=90°
∴∠EHC=∠B+∠D=90°
∴DE⊥BC