打累死了。。。。。采纳吧= =Sn=2/2+3/2^2+4/2^3+...+n/2^(n-1)+(n+1)/2^n
2Sn=2/1+3/2+4/2^2+...+n/2^(n-2)+(n+1)/2^(n-1)
两式相减:
Sn=2+1/2+1/2^2+1/2^3+...+1/2^(n-1)-(n+1)/2^n
=2+(1/2)*[1-(1/2)^(n-1)]/(1-1/2)-(n+1)/2^n
=3-1/2^(n-1)-(n+1)/2^n
=3-(n+3)/2^n.
设原式和为Sn,那么2*Sn=2+3/2+4/2^2+……+n/2^(n-2)+(n+1)/2^(n-1)
所以Sn=2Sn-Sn=2+[1/2+1/2^2+……+1/2^(n-1)]-(n+1)/2^n
=2-(n+1)/2^n+(1/2)*[1-1/2^(n-1)]/(1-1/2)
=3-(n+3)/2^n
设M=1+3/2²+4/2³+。。。+n/2^(n-1)+(n+1)/2^n,
2M=2+3/2+4/2²+5/2³+。。。+n/2^(n-2)+(n+1)/2^(n-1)
2M-M=M=2+1/2+1/2²+1/2³+。。。+1/2^(n-2)-(n+1)/2^n
=2+(2^(n-1)-1)/2^(n-1)-(n+1)/2^n
=2+(2^n-n-3)/2^n
=3-(n+3)/2^n.
这个我来!所有项乘1/2之后用没乘的减去乘过的,就是等比数列求和。之后再除1/2(1=2/2)