lim(1^x+2^x+3^x)^(1/x) =e^(lim{ln[(1^x+2^x+3^x)^(1/x)])}=e^{lim[(1/x)ln(1^x+2^x+3^x)]}
=e^{lim[(2^x)ln2+(3^x)ln3] / (1+2^x+3^x)}=e^(ln3)=3
3=(3^x)^(1/x)<(1^x+2^x+3^x)^(1/x)<(3^x+3^x+3^x)^(1/x)=3^(1/x)*3
因为lim3^(1/x)*3=3
由夹逼定理得lim(x->+∞)(1^x+2^x+3^x)^(1/x)=3