解:3×(1×2+2×3+3×4+4×5···+99×100)
=3*(1^2+1+2^2+2+3^2+3+...+99^2+99)
=3(1+2+...+99)+3(1^2+2^2+。。。+99^2)
=3*99(99+1)/2+3*99(99+1)(99*2+1)/6
=3*99*100/6(99*2+4)
=3*99*100*202/6
=99*100*101
=999900
=3*(1-1/2+1/2-1/3+……+1/99-1/100)
=3*(1-1/100)
=3*(99/100)
=297/100
=2.97
第2题
=1-1/6+1-1/12+1-1/20+1-1/30+1-1/42
=5-(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)
=5-(5/14)
=65/14
第3题
=(65/7+65/9)÷(5/7+5/9)
=65*(1/7+1/9)÷5(1/7+1/9)
=13 应该是这样呵呵,我好想看到过
3/1*2+3/2*3+3/3*4+……+3/99*100
=3×(1/1×2+1/2×3+1/3×4+1/4×5+...+1/99×100)
=3×(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)
=3×(1-1/100)
=3×99/100
=2.97
5/6+11/12+19/20+29/30+41/42
=1-1/6+1-1/12+1-1/20+1-1/30+1-1/42
=5-[1/(2×3)+1/(3×4)+1/(4×5)+1/(5×6)+]1/(6×7)]
=5-[1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7]
=5-[1/2-1/7]
=5-5/14
=4 又9/14
(9又2/7+7又2/9)÷(5/7+5/9)
=(65/7+65/9)÷(5/7+5/9)
=13×(5/7+5/9)÷(5/7+5/9)
=13
因为:1/6=1/2-1/3 1/12=1/3-1/4 1/20=1/4-1/5 1/30=1/5-1/6 1/42=1/6-1/7
5/6+11/12+19/20+29/30+41/42
原式=(1- 1/6)+ (1- 1/12) +(1- 1/20)+(1-1/30)+(1-1/42)
=1*5-(1/6+1/12+1/20+1/30+1/42)
=5-(1/2-1/3 +1/3-1/4 + 1/4-1/5 + 1/5-1/6 +1/6-1/7)
=5-(1/2-1/7)
=5-5/14
=4又9/14
(9又2/7+7又2/9)÷(5/7+5/9)=?
原式=(65/7+65/9)÷(5/7+5/9)
=65(1/7+1/9)÷[ 5(1/7+1/9)]
=13
3/1*2+3/2*3+3/3*4+……+3/99*100(说明1/1*2=1-1/2 1/2*3=1/2-1/3……3/99*100=1/99-1/100)
原式=3(1-1/100)
=297/100
=3*(1-1/2+1/2-1/3+……+1/99-1/100)
=3*(1-1/100)
=3*(99/100)
=297/100
=2.97
第2题
=1-1/6+1-1/12+1-1/20+1-1/30+1-1/42
=5-(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)
=5-(5/14)
=65/14
第3题
=(65/7+65/9)÷(5/7+5/9)
=65*(1/7+1/9)÷5(1/7+1/9)
=13