an=1+2+3+4+…+n=(n+1)n/2
1/an=2/[(n+1)n]=2[1/n - 1/(n+1)]
数列[1/an]的前n项和:2[(1-1/2)+(1/2-1/3)+(1/3-1/4)+...(1/n- 1/n+1)] = 2[1- 1/(n+1)]=2n/(n+1)
祝你学习进步!
an=1+2+3+4+…+n=n(n+1)/2
1/an=2/n(n+1)=2(1/n-1/n+1)
2[(1-1/2)+(1/2-1/3)+(1/3-1/4)+...(1/n-1/n+1)]=2(1-1/n+1)=2n/n+1
an=n(n+1)/2
所以1/an=2/n(n+1)=2(1/n-1/n+1)
[1/an]的前n项和=2n/n+1