当n=1时,左边=1-½=½,右边=½,原式成立假设当n=k时原式成立,则当n=k+1时左边=1-1/2+1/3-1/4+.....+1/(2k+1)-1/﹙2k+2﹚=1/(k+1)+1/(k+2)+....+1/(2k﹚+1/(2k+1)-1/﹙2k+2﹚=1/(k+2)+....+1/(2k﹚+1/(2k+1)-1/﹙2k+2﹚+2/﹙2k+2﹚=1/(k+2)+....+1/(2k﹚+1/(2k+1)+1/﹙2k+2﹚=右边故原式成立