用截面法来求解:
∭dxdydz=
∫(0,1)dz∬dxdy
显然,∬dxdy为曲面上的截面面积
x^du2+y^2=z
则截面为半径为√z的圆,则
∬dxdy=πz
则原式=
∫(0,1) πzdz
=π/2z^2|(0,1)
=π/2
或者
作变换x=rcosu,y=rsinu,则dxdy=rdrdu,
原式=∫<0,2π>du∫<0,1>rdr∫dz
=2π∫<0,1>r(1-r^2)dr
=π/2

扩展资料:
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
②函数条件:f(x,y)仅为一个变量的函数。
参考资料来源:百度百科-三重积分