求lim((m)⼀(1-x^(m))-(n)⼀(1-x^(n)))(x趋向于1)

2025-01-07 20:30:45
推荐回答(2个)
回答1:

有个公式
1-x^m=(1-x)(x^(m-1)+x^(m-2)+……+x+1)
你这道题我记得我做过,好像是超越千题上面的吧

回答2:

lim(m(1-x^n)-n(1-x^m))/(1-x^n)(1-x^m)
=lim(-mnx^(n-1)+mnx^(m-1))/[(m+n)x^(m+n-1)-nx^(n-1)-mx^(m-1)]
=mnlim[(m-1)x^(m-2)-(n-1)x^(n-2)]/[(m+n-1)x^(m+n-2)-n(n-1)x^(n-2)-m(m-1)x^(m-2)]
=mn*(m-1-n+1)/(m+n-1-n²+n-m²+m)
=mn(m-n)/(2m+2n-1-n²-m²)