解分式方程:1⼀(x2-2x-3) +2⼀(x2-x-6) +3⼀(x2+3x+2)=0

2025-01-05 17:10:29
推荐回答(2个)
回答1:

1/(x2-2x-3) +2/(x2-x-6) +3/(x2+3x+2)=0
1/(x-3)(x+1)+2/(x-3)(x+2)+3/(x+1)(x+2)=0
两边同乘以(x+1)(x+2)(x-3)得:
(x+2)+2(x+1)+3(x-3)=0
x+2+2x+2+3x-9=0
6x=5
x=5/6

回答2:

1/(x-3)(x+1)+2/(x-3)(x+2)+1/ (x+2)(x+1)=0
通分,公分母为(x-3)(x+1)(x+2)
[(x+2)+2(x+1)+3(x-3)]/(x-3)(x+1)(x+2)=0
(6x-5)/(x-3)(x+1)(x+2)=0
(x-3)(x+1)(x+2)≠0
则 x=5/6