1/(1×3)+1/(3×5)+1/(5×7)+...+1/(2009×2011)=(1/2)(1-1/3+1/3-1/5+1/5-1/7+...+1/2009-1/2011)=(1/2)(1-1/2011)=1005/2011 一般的:1/[n(n+1)]=1/n -1/(n+1)1/[n(n+2)]=(1/2)[1/n -1/(n+2)]…………1/[n(n+k)]=(1/k)[1/n -1/(n+k)]