总第3943期九年级少年智力开发报数学答案

2024-12-22 16:03:47
推荐回答(2个)
回答1:

!、1.C 2.D 3.C 4.B 5.C 6.C 7.C 8.C
"、9.#$
10.%!&’()*+,-./’
11.6
12.2
13.0,1’23/’4&’(35’&’(
14.13
15.30°
16.#$
&、17.67:89:“HL”;18.67:(1)8>?∠DBC = 30°,=>?∠DEC = 30°,@AB?DB = DE;
(2)C.
19.DRt△ADB),
∵ ∠ADB = 90°,∠B = 45°,
∴ BD = AD = 2.
DRt△ADC),
∵ ∠ADC = 90°,∠C = 30°,AD = 2,
∴ AC = 2AD = 4.
EFGHI,BCD =AC2-AD槡2=42-2槡2= 槡23.
∴ △ABC4JK =1
2AD·BC =1
2×2×(2+ 槡23)= 2+ 槡23.
20.67:L∠AOB4MNOPCD4QRMNO,STUVWEU.XC,YCD4QRMNOP∠AOB4MNOMZ[,EU
\]^.
21.;<:(1)∵ BF = AC,AB = AE,
∴ AF = CE.
∵ △DEFW#_&’(.
∴ EF = DE.
‘∵ AE = CD,
∴ △AEF≌△CDE.
(2)E△AEF≌△CDE,B∠FEA = ∠EDC.
∵ ∠BCA = ∠EDC +∠DEC = ∠FEA +∠DEC = ∠DEF.
‘△DEFW#_&’(.
∴ ∠BCA = ∠DEF = 60°,%IXB∠BAC = 60°.
∴ D△ABC),AB = BC,
∴ △ABC3#_&’(.
a、22.(1)①∵ ∠ADC = ∠ACB = 90°,
∴ ∠CAD +∠ACD = 90°,∠BCE +∠ACD = 90°.
∴ ∠CAD = ∠BCE.
∵ AC = BC,
∴ △ADC≌△CEB(AAS).
②∵ △ADC≌△CEB,
∴ AD = CE,CD = BE.
∴ DE = CE +CD = AD +BE.
(2)∵ ∠ADC = ∠CEB = ∠ACB = 90°,
∴ ∠ACD +∠BCE = 90°,∠BCE +∠CBE = 90°.
∴ ∠ACD = ∠CBE.
‘∵ AC = BC,
∴ △ACD≌△CBE.
∴ CE = AD,CD = BE.
∴ DE = CE -CD = AD -BE.
(3)YMNbc^d14(3)4ef[,AD,DE,BE0gh4#ijk3DE = BE -AD(!AD = BE -DE,BE = AD +DE")
∵ ∠ADC = ∠CEB = ∠ACB = 90°,
∴ ∠ACD +∠DCB = 90°,∠DCB +∠CBE = 90°.
∴ ∠ACD = ∠CBE.
‘∵ AC = BC,
∴ △ACD≌△CBE,
∴ AD = CE,CD = BE,
【! 3"】
2!"#$%&’()
#$%&’()
!*+,+-./0(A)
1234
!、1.C 2.D 3.C 4.B 5.C 6.C 7.C 8.C
"、9.#$
10.%!&’()*+,-./’
11.6
12.2
13.0,1’23/’4&’(35’&’(
14.13
15.30°
16.#$
&、17.67:89:“HL”;18.67:(1)8>?∠DBC = 30°,=>?∠DEC = 30°,@AB?DB = DE;
(2)C.
19.DRt△ADB),
∵ ∠ADB = 90°,∠B = 45°,
∴ BD = AD = 2.
DRt△ADC),
∵ ∠ADC = 90°,∠C = 30°,AD = 2,
∴ AC = 2AD = 4.
EFGHI,BCD =AC2-AD槡2=42-2槡2= 槡23.
∴ △ABC4JK =1
2AD·BC =1
2×2×(2+ 槡23)= 2+ 槡23.
20.67:L∠AOB4MNOPCD4QRMNO,STUVWEU.XC,YCD4QRMNOP∠AOB4MNOMZ[,EU
\]^.
21.;<:(1)∵ BF = AC,AB = AE,
∴ AF = CE.
∵ △DEFW#_&’(.
∴ EF = DE.
‘∵ AE = CD,
∴ △AEF≌△CDE.
(2)E△AEF≌△CDE,B∠FEA = ∠EDC.
∵ ∠BCA = ∠EDC +∠DEC = ∠FEA +∠DEC = ∠DEF.
‘△DEFW#_&’(.
∴ ∠BCA = ∠DEF = 60°,%IXB∠BAC = 60°.
∴ D△ABC),AB = BC,
∴ △ABC3#_&’(.
a、22.(1)①∵ ∠ADC = ∠ACB = 90°,
∴ ∠CAD +∠ACD = 90°,∠BCE +∠ACD = 90°.
∴ ∠CAD = ∠BCE.
∵ AC = BC,
∴ △ADC≌△CEB(AAS).
②∵ △ADC≌△CEB,
∴ AD = CE,CD = BE.
∴ DE = CE +CD = AD +BE.
(2)∵ ∠ADC = ∠CEB = ∠ACB = 90°,
∴ ∠ACD +∠BCE = 90°,∠BCE +∠CBE = 90°.
∴ ∠ACD = ∠CBE.
‘∵ AC = BC,
∴ △ACD≌△CBE.
∴ CE = AD,CD = BE.
∴ DE = CE -CD = AD -BE.
(3)YMNbc^d14(3)4ef[,AD,DE,BE0gh4#ijk3DE = BE -AD(!AD = BE -DE,BE = AD +DE")
∵ ∠ADC = ∠CEB = ∠ACB = 90°,
∴ ∠ACD +∠DCB = 90°,∠DCB +∠CBE = 90°.
∴ ∠ACD = ∠CBE.
‘∵ AC = BC,
∴ △ACD≌△CBE,
∴ AD = CE,CD = BE,
∴ DE = CD -CE = BE -AD.3数学专页
2009~2010 学年九年级北师大版●参考答案

!、1.D 2.C 3.D 4.C 5.A 6.A 7.C 8.A
"、9.#$%&!,’ AB = BC(
10.6
11.6
12.6 + 槡23
13.AO = DO ) AB = DC) BO = CO
14.AB,EF,GH
15.6,40°
16.槡5(!":# D $%& AB’()$ F,*+ DF, AB& E,E$-./0’$.)
*、17.+,-./01234*567(89.:’:PA = PB.
;<=!>7(*56? △PAD ≌ △PBC.
34:∵ PA = PB,∴ ∠A = ∠B.
@ ∵ AD = BC,∴ △PAD ≌ △PBC.
18.34:(1)∵ △ABC?(A*56,
∴ AC = CB,∠A = ∠BCE = 60°.
@ ∵ AD = CE,∴ △ACD ≌ △CBE.
(2)DCB BE+C= ∠BFC=DEFGH,∠BFC = 120°.
19.(1)IJK;
(2)CM = 2BM.
34:LM AM,
∵ AB = AC,∠A = 120°,∴ ∠B = ∠C = 30°.
∵ MN NOPQ AB,∴ MB = MA.
∵ ∠MAB = ∠B = 30°,∴ ∠MAC = 120°-30° = 90°.
R Rt△AMCS,∠C = 30°,
∴ CM = 2AM.∴ CM = 2BM.
20.TU:(1)VWXYZ[89\],’J1;
(2)9^_‘a4ba3)‘a6ba2(cd,’J2,eTf!g#$fh^.
21.∵ ∠A = 90°,AB = AC,
∴ △ABC?(iO5*56.∴ ∠B = 45°.
∵ DE⊥ BC,∴ △DBE?(iO5*56.
∴ BD = DE = 1.
jXYZ[,; BE =BD2+DE槡2= 槡2.
R Rt△AECk Rt△DECS,
∵ CD = CA,EC = EC,∴ Rt△AEC≌ Rt△DEC(HL).
∴ AE = DE = 1.
∴ AC = AB = AE +EB = 1 +槡2,BC = BD +DC = BD +AC = 2 +槡2.
∴ △ABC=lm = AB +AC +BC = 4 + 槡32.
n、22.TU:(1)∠C > ∠B.
34:’J3,R ABopq AD = AC,LM DC.
r ∠ADC = ∠ACD.sa ∠ADC? △BDC=!tu5,
+v ∠ADC > ∠B.
@ ∠ACB > ∠ACD,sw ∠ACB > ∠B.
jw;=5zD,zE=A+>=5zE.{|a:DA>D5.
(2)AB > AC.
34:’J4,R ∠C=}~I ∠BCE = ∠B, AB€ E.
∵ ∠B = ∠BCE,∴ BE = EC(12(13).
∴ AB = AE +BE = AE +EC.
@ AE +EC > AC(43567&893),
∴ AB > AC.
jw;=AzD.{|a:D5>DA.
(3)j(1)(2)xy,‚ AB > AC > BCƒ,∠C > ∠B > ∠A.
(4)!„…xy:*56S,%(A+>=5†%(,DA+>=5zD.‡ˆ‰Š(:;<=->).
图1图2
B
A
C
D
FE
A
D
CB
图3图4
A
E
CB∴ DE = CD -CE = BE -AD.

回答2:

fjt7