!、1.C 2.D 3.C 4.B 5.C 6.C 7.C 8.C"、9.#$10.%!&’()*+,-./’11.612.213.0,1’23/’4&’(35’&’(14.1315.30°16.#$&、17.67:89:“HL”;18.67:(1)8>?∠DBC = 30°,=>?∠DEC = 30°,@AB?DB = DE;(2)C.19.DRt△ADB),∵ ∠ADB = 90°,∠B = 45°,∴ BD = AD = 2.DRt△ADC),∵ ∠ADC = 90°,∠C = 30°,AD = 2,∴ AC = 2AD = 4.EFGHI,BCD =AC2-AD槡2=42-2槡2= 槡23.∴ △ABC4JK =12AD·BC =12×2×(2+ 槡23)= 2+ 槡23.20.67:L∠AOB4MNOPCD4QRMNO,STUVWEU.XC,YCD4QRMNOP∠AOB4MNOMZ[,EU\]^.21.;<:(1)∵ BF = AC,AB = AE,∴ AF = CE.∵ △DEFW#_&’(.∴ EF = DE.‘∵ AE = CD,∴ △AEF≌△CDE.(2)E△AEF≌△CDE,B∠FEA = ∠EDC.∵ ∠BCA = ∠EDC +∠DEC = ∠FEA +∠DEC = ∠DEF.‘△DEFW#_&’(.∴ ∠BCA = ∠DEF = 60°,%IXB∠BAC = 60°.∴ D△ABC),AB = BC,∴ △ABC3#_&’(.a、22.(1)①∵ ∠ADC = ∠ACB = 90°,∴ ∠CAD +∠ACD = 90°,∠BCE +∠ACD = 90°.∴ ∠CAD = ∠BCE.∵ AC = BC,∴ △ADC≌△CEB(AAS).②∵ △ADC≌△CEB,∴ AD = CE,CD = BE.∴ DE = CE +CD = AD +BE.(2)∵ ∠ADC = ∠CEB = ∠ACB = 90°,∴ ∠ACD +∠BCE = 90°,∠BCE +∠CBE = 90°.∴ ∠ACD = ∠CBE.‘∵ AC = BC,∴ △ACD≌△CBE.∴ CE = AD,CD = BE.∴ DE = CE -CD = AD -BE.(3)YMNbc^d14(3)4ef[,AD,DE,BE0gh4#ijk3DE = BE -AD(!AD = BE -DE,BE = AD +DE")∵ ∠ADC = ∠CEB = ∠ACB = 90°,∴ ∠ACD +∠DCB = 90°,∠DCB +∠CBE = 90°.∴ ∠ACD = ∠CBE.‘∵ AC = BC,∴ △ACD≌△CBE,∴ AD = CE,CD = BE,【! 3"】2!"#$%&’()#$%&’()!*+,+-./0(A)1234!、1.C 2.D 3.C 4.B 5.C 6.C 7.C 8.C"、9.#$10.%!&’()*+,-./’11.612.213.0,1’23/’4&’(35’&’(14.1315.30°16.#$&、17.67:89:“HL”;18.67:(1)8>?∠DBC = 30°,=>?∠DEC = 30°,@AB?DB = DE;(2)C.19.DRt△ADB),∵ ∠ADB = 90°,∠B = 45°,∴ BD = AD = 2.DRt△ADC),∵ ∠ADC = 90°,∠C = 30°,AD = 2,∴ AC = 2AD = 4.EFGHI,BCD =AC2-AD槡2=42-2槡2= 槡23.∴ △ABC4JK =12AD·BC =12×2×(2+ 槡23)= 2+ 槡23.20.67:L∠AOB4MNOPCD4QRMNO,STUVWEU.XC,YCD4QRMNOP∠AOB4MNOMZ[,EU\]^.21.;<:(1)∵ BF = AC,AB = AE,∴ AF = CE.∵ △DEFW#_&’(.∴ EF = DE.‘∵ AE = CD,∴ △AEF≌△CDE.(2)E△AEF≌△CDE,B∠FEA = ∠EDC.∵ ∠BCA = ∠EDC +∠DEC = ∠FEA +∠DEC = ∠DEF.‘△DEFW#_&’(.∴ ∠BCA = ∠DEF = 60°,%IXB∠BAC = 60°.∴ D△ABC),AB = BC,∴ △ABC3#_&’(.a、22.(1)①∵ ∠ADC = ∠ACB = 90°,∴ ∠CAD +∠ACD = 90°,∠BCE +∠ACD = 90°.∴ ∠CAD = ∠BCE.∵ AC = BC,∴ △ADC≌△CEB(AAS).②∵ △ADC≌△CEB,∴ AD = CE,CD = BE.∴ DE = CE +CD = AD +BE.(2)∵ ∠ADC = ∠CEB = ∠ACB = 90°,∴ ∠ACD +∠BCE = 90°,∠BCE +∠CBE = 90°.∴ ∠ACD = ∠CBE.‘∵ AC = BC,∴ △ACD≌△CBE.∴ CE = AD,CD = BE.∴ DE = CE -CD = AD -BE.(3)YMNbc^d14(3)4ef[,AD,DE,BE0gh4#ijk3DE = BE -AD(!AD = BE -DE,BE = AD +DE")∵ ∠ADC = ∠CEB = ∠ACB = 90°,∴ ∠ACD +∠DCB = 90°,∠DCB +∠CBE = 90°.∴ ∠ACD = ∠CBE.‘∵ AC = BC,∴ △ACD≌△CBE,∴ AD = CE,CD = BE,∴ DE = CD -CE = BE -AD.3数学专页2009~2010 学年九年级北师大版●参考答案书!、1.D 2.C 3.D 4.C 5.A 6.A 7.C 8.A"、9.#$%&!,’ AB = BC(10.611.612.6 + 槡2313.AO = DO ) AB = DC) BO = CO14.AB,EF,GH15.6,40°16.槡5(!":# D $%& AB’()$ F,*+ DF, AB& E,E$-./0’$.)*、17.+,-./01234*567(89.:’:PA = PB.;<=!>7(*56? △PAD ≌ △PBC.34:∵ PA = PB,∴ ∠A = ∠B.@ ∵ AD = BC,∴ △PAD ≌ △PBC.18.34:(1)∵ △ABC?(A*56,∴ AC = CB,∠A = ∠BCE = 60°.@ ∵ AD = CE,∴ △ACD ≌ △CBE.(2)DCB BE+C= ∠BFC=DEFGH,∠BFC = 120°.19.(1)IJK;(2)CM = 2BM.34:LM AM,∵ AB = AC,∠A = 120°,∴ ∠B = ∠C = 30°.∵ MN NOPQ AB,∴ MB = MA.∵ ∠MAB = ∠B = 30°,∴ ∠MAC = 120°-30° = 90°.R Rt△AMCS,∠C = 30°,∴ CM = 2AM.∴ CM = 2BM.20.TU:(1)VWXYZ[89\],’J1;(2)9^_‘a4ba3)‘a6ba2(cd,’J2,eTf!g#$fh^.21.∵ ∠A = 90°,AB = AC,∴ △ABC?(iO5*56.∴ ∠B = 45°.∵ DE⊥ BC,∴ △DBE?(iO5*56.∴ BD = DE = 1.jXYZ[,; BE =BD2+DE槡2= 槡2.R Rt△AECk Rt△DECS,∵ CD = CA,EC = EC,∴ Rt△AEC≌ Rt△DEC(HL).∴ AE = DE = 1.∴ AC = AB = AE +EB = 1 +槡2,BC = BD +DC = BD +AC = 2 +槡2.∴ △ABC=lm = AB +AC +BC = 4 + 槡32.n、22.TU:(1)∠C > ∠B.34:’J3,R ABopq AD = AC,LM DC.r ∠ADC = ∠ACD.sa ∠ADC? △BDC=!tu5,+v ∠ADC > ∠B.@ ∠ACB > ∠ACD,sw ∠ACB > ∠B.jw;=5zD,zE=A+>=5zE.{|a:DA>D5.(2)AB > AC.34:’J4,R ∠C=}~I ∠BCE = ∠B, AB€ E.∵ ∠B = ∠BCE,∴ BE = EC(12(13).∴ AB = AE +BE = AE +EC.@ AE +EC > AC(43567&893),∴ AB > AC.jw;=AzD.{|a:D5>DA.(3)j(1)(2)xy,‚ AB > AC > BCƒ,∠C > ∠B > ∠A.(4)!„…xy:*56S,%(A+>=5†%(,DA+>=5zD.‡ˆ‰Š(:;<=->).图1图2BACDFEADCB图3图4AECB∴ DE = CD -CE = BE -AD.
fjt7