解:①当a<0时,f(x)=ax²+ax+1,图像的开口向下,则必存在x,使得f(x)<0,故不满足②当a=0时,f(x)=1>0,恒成立,满足③当a>0时,f(x)=ax²+ax+1,图像的开口向上,要是f(x)>0恒成立,即与x轴无交点。 则只需△=a²-4a<0,解得0<a<4 综上:a=0或0<a<4 希望可以帮到你 祝学习快乐 O(∩_∩)O~
欧普普通今天一看葡萄牙爬乌龟i稳固额外