lim(n→∞) n根号下(2∧n+3∧n)
=lim(n→∞) (2∧n+3∧n)^(1/n)
=lim(n→∞) [(2/3)^n+1)^(1/n)]*(3^n)^(1/n)
=lim(n→∞) 3*[(2/3)^n+1)^(1/n)]
再来看lim(n→∞) [(2/3)^n+1)^(1/n)的极限,取自然对数
lim(n→∞) ln[(2/3)^n+1)^(1/n)
=lim(n→∞) ln[(2/3)^n+1)]/n
=lim(n→∞) (2/3)^n/n
=0
所以lim(n→∞) ln[(2/3)^n+1)]/n=1
lim(n→∞) 3*[(2/3)^n+1)^(1/n)]=3
所以原极限为3
lim(n →∞ )[√(2^n+3^n)]^(1/n)题目是不是这样的 要是的话提出3^n出来化成
lim(n →∞ )3[√(1+(2/3)^n)]^(1/n)=3
lim(n→∞) [(2^n+3^n)^(1/n)]
=3lim(n→∞){ [(2^n+3^n)/3^n]^(1/n)}
=3lim(n→∞){ [(2/3)^n+1)]^(1/n)}
=3*1=3