直接的方法:
令n=1
S1=1²=1
又S1=1×(a×1²+b)=a+b
因此a+b=1
比较严格的方法:
Sn=1²+2²+...+n²+(n-1)²+...+1²
=2(1²+2²+...+n²)-n²
=2n(n+1)(2n+1)/6 -n²
=n[(n+1)(2n+1)-3n]/3
=n(2n²+3n+1-3n)/3
=n(2n²+1)/3
=n[(2/3)n²+(1/3)]
a=2/3 b=1/3
a+b=1
Sn=1^2+2^2+……+n^2+……+2^2+1^2
=n(n+1)(2n+1)/6+(n-1)n(2n-1)/6
=n/6[(n+1)(2n+1)+(n-1)(2n-1)]
=n/6[2n^2+3n+1+2n^2-3n+1]
=n(4n^2+2)/6
=n(2n^2+1)/3
=n(2/3*n^2+1/3)
a=2/3,b=1/3
a+b=1/3+2/3=1
以n=1代入Sn=n(an²+b)中,得:S1=1²=1×(a+b)
则:a+b=1