设S1=1^2,S2=1^2+2^2+1^2,S3=1^2+2^2+3^2+2^2+1^2,……,Sn==1^2+2^2+……+n^2+……+2^2+1^2,……,

2024-12-21 02:09:41
推荐回答(3个)
回答1:

直接的方法:
令n=1
S1=1²=1
又S1=1×(a×1²+b)=a+b
因此a+b=1

比较严格的方法:
Sn=1²+2²+...+n²+(n-1)²+...+1²
=2(1²+2²+...+n²)-n²
=2n(n+1)(2n+1)/6 -n²
=n[(n+1)(2n+1)-3n]/3
=n(2n²+3n+1-3n)/3
=n(2n²+1)/3
=n[(2/3)n²+(1/3)]

a=2/3 b=1/3

a+b=1

回答2:

Sn=1^2+2^2+……+n^2+……+2^2+1^2
=n(n+1)(2n+1)/6+(n-1)n(2n-1)/6
=n/6[(n+1)(2n+1)+(n-1)(2n-1)]
=n/6[2n^2+3n+1+2n^2-3n+1]
=n(4n^2+2)/6
=n(2n^2+1)/3
=n(2/3*n^2+1/3)
a=2/3,b=1/3
a+b=1/3+2/3=1

回答3:

以n=1代入Sn=n(an²+b)中,得:S1=1²=1×(a+b)
则:a+b=1