置信区间与正态分布的关系?

2024-12-20 03:20:21
推荐回答(4个)
回答1:

置信区间与正态分布的关系:
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平。置信区间与置信水平、样本量的关系1.样本量对置信区间的影响:在置信水平固定的情况下,样本量越多,置信区间越窄。实例分析:样本量置信区间间隔宽窄度10050%-70%20宽80056.2%-63.2%7较窄1,60057.5%-63%5.5较窄3,20058.5%-62%3.5更窄由上表得出:1、在置信水平相同的情况下,样本量越多,置信区间越窄。2、置信区间变窄的速度不像样本量增加的速度那么快,也就是说并不是样本量增加一倍,置信区间也变窄一半(实践证明,样本量要增加4倍,置信区间才能变窄一半),所以当样本量达到一个量时(通常是1,200,如上例三个国家各抽了1,200个消费者),就不再增加样本了。置信区间=点估计±(关键值× 点估计的标准差)通过置信区间的计算公式来验证置信区间与样本量的关系。例如:对于总体均值的置信区间估计:公式为:样本均值 关键值 × 样本均值的标准误差;即从上述公式中可以看出:在其他因素不变的情况下,样本量越多(大),置信区间越窄(小)。2.置信水平对置信区间的影响:在样本量相同的情况下,置信水平越高,置信区间越宽。

回答2:

置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平。举例来说,如果在一次大选中某人的支持率为55%,而置信水平0.95上的置信区间是(50%,60%),那么他的真实支持率有百分之九十五的机率落在百分之五十和百分之六十之间,因此他的真实支持率不足一半的可能性小于百分之5。 如例子中一样,置信水平一般用百分比表示,因此置信水平0.95上的置信空间也可以表达为:95%置信区间。置信区间的两端被称为置信极限。对一个给定情形的估计来说,置信水平越高,所对应的置信区间就会越大。

回答3:

置信区间与正态分布的关系:
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平。举例来说,如果在一次大选中某人的支持率为55%,而置信水平0.95上的置信区间是(50%,60%),那么他的真实支持率有百分之九十五的机率落在百分之五十和百分之六十之间,因此他的真实支持率不足一半的可能性小于百分之5。 如例子中一样,置信水平一般用百分比表示,因此置信水平0.95上的置信空间也可以表达为:95%置信区间。置信区间的两端被称为置信极限。对一个给定情形的估计来说,置信水平越高,所对应的置信区间就会越大。

回答4:

置信区间的前提是符合正态分布