解:an=2^(n+1),数列{an}是首项为4、公比为2的等比数列
根据等比数列的前n项和公式有:
sn=[a1-anq]/(1-q)
=[4-2^(n+1)×2]/(1-2)
=2^(n+2)-4
a(n) = 1/[(n+1)(n+2)] = 1/(n+1) - 1/(n+2) S(n) = a(1) + a(2) + . + a(n) = 1/2 - 1/3 + 1/3 - 1/4 +
an=2²
q=2
所以Sn=2²*(1-2^n)/(1-2)
=2^(n+2)-4