1集合
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合
注:空集属于任何集合,但它不属于任何元素.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B
常用数集的符号:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,级做R
集合的运算:
1.交换律
A∩B=B∩A
A∪B=B∪A
2.结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
2函数
函数的单调性:设函数f(x)的定义域为I.
如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1
如果函数y=f(x)在某个区间上是增函数或减函数,则称函数y=f(x)在这一区间上具有严格的单调性,这一区间叫做函数y=f(x)的单调区间。
函数的奇偶性:在函数y=f(x)中,如果对于函数定义域内的任意一个x.
(1)若都有f(-x)=-f(x),则称函数f(x)为奇函数;
(2)若都有f(-x)=f(x),则称函数f(x)为偶函数。
如果函数y=f(x)在某个区间上是奇函数或者偶函数,那么称函数y=f(x)在该区间上具有奇偶性。
1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与x轴交点的坐标总是(0,b)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
3基本初等函数
指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
同时a等于0一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点
(8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n属于R)
4立体几何初步
1.1.1 构成空间几何体的基本元素柱
1.1.2 棱、棱锥和棱台的结构特征
1.1.3 圆柱、圆锥和圆台的结构特征
1.1.4 投影与直观图
1.1.5 三视图
1.1.6 棱柱、棱锥和棱台的表面积
1.1.7 柱、锥和台的体积
点线面位置关系
公理一:如果一条线上的两个点在平面上则该线在平面上
公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上
公理三:三个不共线的点确定一个平面
推论一:直线及直线外一点确定一个平面
推论二:两相交直线确定一个平面
推论三:两平行直线确定一个平面
公理四:和同一条直线平行的直线平行
异面直线定义:不平行也不相交的两条直线
判定定理:经过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。
等角定理:如果一个角的两边和另一个角的两边分别平行,且方向相同,那么这两个角相等
线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。
线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。
5平面解析几何初步
两点距离公式:根号[(x1-x2)^2+(y1-y2)^2]
中点公式:X=(X1+X2)/2 Y=(Y1+Y2)/2
直线的斜率
倾斜角不是90°的直线`,它的倾斜角的正切,叫做这条直线的斜率.通常用k来表示,记作:
k=tga(0°≤a<180°且a≠90°)
倾斜角是90°的直线斜率不存在,倾斜角不是90°的直线都有斜率并且是确定的.
点斜式:y-y1=k(x-x1);
斜截式:y=kx+b;
截距式:x/a+y/b=1
直线的标准方程:Ax+Bx+C=0
圆的一般方程:
x2+y2+Dx+Ey+F=0
圆的标准方程
(x-a)2+(y-b)2=r2 《2表示平方》
圆与圆的位置关系:
1 点在圆上(点到半径的距离等于半径)
点在圆外(点到半径的距离大于半径)
点在圆内(点到半径的距离小于半径)
2 (1)相切:圆心到直线的距离等于半径
(2)相交:圆心到直线的距离小于半径
(3)相离:圆心到直线的距离大于半径
3 圆的切线是指 垂直于半径,直线到圆心距离等于半径的直线,垂足叫切点
4 圆心距为Q 大圆半径为R 小圆半径为r
两圆外切 Q=R+r
两圆内切 Q=R-r (用大减小)
两圆相交 Q
两圆内含 Q
有如下关系
相离则d>r,反之d>r则相离,
相切则d=r,反之d=r则相切,
相交则d
ABCD – A′B′C′O是长方体,以O为原点,分别以射线OB、OA’、OB’为正方向,以线段OB、
OA’、OB’建立三条坐标轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系O – xyz,点O叫做坐标
原点,x、y、z轴叫做坐标轴,由两条坐标轴组成的平面叫做坐标平面, 分别叫做xOy平面、yOz平zOx平面,这种坐标系叫做右
空间直角坐标系内点的坐标表示方法
设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。
空间内两点之间的距
空间中两点P1(x1,y1,z1)、P2(x2,y2,z2)的距离|P1P2|=√[(x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2
空间中点公式
空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),中点P坐标[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2]
http://zhidao.baidu.com/question/222119383.html