三位科学家让我们认识、理解了宇宙、世界,对未来的科学、天文发展做出了杰出的贡献,提供了理论支撑,更有效地进行研究。
在北京时间10月8日17时45分,瑞典皇家科学院宣布,2019年诺贝尔物理学奖将授予吉姆·皮布尔斯、米歇尔·麦耶和迪迪埃·奎洛兹,表彰他们在天体物理学方面的重大发现。诺贝尔官方在新闻稿中写道:“他们的发现,永远改变了我们对世界的看法。”
皮布尔斯1935年出生于加拿大温尼伯,是现任的普林斯顿大学阿尔贝特·爱因斯坦荣誉科学教授。1962年,詹姆斯·皮布尔斯获美国普林斯顿大学博士,从1970年起,皮布尔斯便开始研究大爆炸核合成、暗物质、宇宙微波背景和结构形成等等众多领域,他研究了拥有数十亿个星系和星系团的宇宙。他的理论框架发展了20多年,是我们现代理解从大爆炸到现在的宇宙历史的基础。皮布尔斯编写过三本教科书,包括1971年的《物理宇宙学》,1980年的《宇宙的大规模结构》和1993年的《物理宇宙学原理》已成为了这个领域的参考书。
米歇尔·迈耶和迪迪埃·奎洛兹探索了我们的家星系——银河系,寻找未知的世界。1995年,他们首次在太阳系外发现了一颗行星,一颗系外行星,围绕着一颗太阳型恒星——51帕伽西。自那以后银河系已经发现了4000多颗系外行星。
2019年诺贝尔物理学奖揭晓,这次表彰的是帮助人类认识宇宙的卓越贡献者。其中一半授予来自美国的吉姆·皮布尔斯(James Peebles),他发现了构成恒星、行星以及我们的这些常规物质只占宇宙能量的5%,剩下95%的宇宙能量都是未知的暗物质与暗能量。暗物质表现为不知来源的巨大引力,暗能量表现为导致宇宙膨胀的无形力量。皮布尔斯的工作为人类认知宇宙建立了一个全新的框架,开创了“物理宇宙学理论”。另一半授予来自瑞士的米歇尔·麦耶(Michel Mayor)和迪迪埃·奎洛兹(Didier Queloz),他们于1995年10月首次发现了一颗名为飞马座51b(绰号“伯洛尔芬”)的系外行星,它绕着银河系中的一颗类似太阳的恒星运转。这也是人类发现的第一颗“热木星”。麦耶和奎洛兹掀起了天文学界的一场革命,开启了人类探索系外行星的新征程。诺贝尔奖的反应迟钝是众所周知的,但这也体现了科学领域的严谨,这份奖项的含金量也远超900万瑞典克朗(约合人民币697万元)的奖金。皮布尔斯阐明的宇宙结构与历史,为过去50年的宇宙学奠定了坚实的基础。他的工作为现代宇宙学开创了一门新的内功,对人类而言是一座巨大的“金矿”,而麦耶和奎洛兹的工作激励了人类探索宇宙的热情,如同一门精彩绝伦的外功,对系外行星的发现开启了人类探寻新世界的“淘金”热潮。要具体阐述皮布尔斯的工作可能需要大量的理论知识与数学知识,一时半会无法说透,所以今天我们不妨说说麦耶和奎洛兹的工作,我们是如何探测系外行星的?探索系外行星,第一个被发现的并非飞马座51b其实在麦耶和奎洛兹的工作之前,1992年人们就发现了一颗围绕脉冲星转动的系外行星PSR 1257+12B,不过它的发现纯属意外,而1995年发现的飞马座51b才是传统意义上围绕恒星公转的系外行星。麦耶和奎洛兹目前都是日内瓦大学的教授,而麦耶是奎洛兹就读博士期间的导师。他们于1995年10月发现了第一颗围绕类似太阳的恒星运转的系外行星,这颗行星正是飞马座51b。其质量接近或超过木星,与其宿主恒星距离只有0.5至0.015个天文单位(地日距离为1个天文单位),大约为水星到太阳距离的1/8至金星到太阳的距离范围,称为“热木星”。飞马座51b距离地球约50光年,质量只有木星的一半,但体积却是木星的两倍,一年只有4天,表面温度在1000 °C ,并且它被潮汐锁定永远以同一面朝向恒星。飞马座51b的发现引发了天文学界的一场革命。之前主流理论一直认为行星的形成需要冷却的构造块,而这些构造块只可能在远离恒星的地方才能形成。这是一个重大的发现,让我们需要重新思考行星系统的形成原因,也掀起了系外行星探索热潮。此后,银河系有4000多颗系外行星被发现。在此之前,发现系外行星是非常困难的一件事,因为行星反射光线比恒星的光线弱得多,要在一颗恒星璀璨的光芒里发现它,谈何如意。对于跨星系的我们来说,遥远恒星的耀眼光芒将淹没周围的一切,要找到伴随它们身边的行星,这就如同在一片波光粼粼的湖里,找到一根小小的针。而有时我们连这片湖都无法找到,更不用说湖中的针了。而随着科学探索手段的发展,遵循事物的因果关系,后来我们发现了许多新的探测技术,大大加速了对系外行星的探测。而第一个成功的探测技术就是径向速度法。
径向速度法要搞清楚这个方法其实很简单,但需要更深刻地理解一下恒星与行星之间的相互作用关系。
我们一般都认为行星围绕恒星公转,而恒星静止不动。但实际上,行星的公转是由于恒星的引力造成的,然而力是相互的,在恒星拽着行星转圈时,行星也拽着恒星轻微的左右晃动,且行星的质量越大,晃动就越明显。比如,太阳系里的木星大哥,就能拽着太阳左摇右晃。而恒星作为一个光源,它的位移就会产生多普勒效应。多普勒效应简单来说,就是具有波性质的一切信息源,在移动过程中会导致发出的波被拉伸或压缩。信息源远离目标运动,波长就会变大;信息源靠近目标运动,波长就会变小。这就好比我们日常听见的警笛声,从远处传来时,声音还很柔和,但随着警车靠拢,警笛声的波长被压缩,会感觉声音立即尖锐了起来。当警车远去时,声音又变得舒缓了。多普勒效应在声波上,表现为音调的升降,而在光波上,则表现为颜色的变化,光源远离我们就会变得更红,称之为“红移”;光源靠近我们就变得更蓝,称之为“蓝移”。知道了这一原理,天文学家就可以使用光谱仪先得到目标恒星的吸收光谱线,这个光谱线就好比这个恒星的指纹一样。但如果它身边有一颗行星在围绕它公转的过程中,使它在朝我们的方向上前后摇动,那么我们就会发现这颗恒星的吸收光谱线不断地来回移动。
因为光谱线的灵敏度相当高,所以径向速度法能检测到几百万光年外,恒星每秒1米的细微移动。不仅可以用来发现系外行星,还可以计算它的质量。飞马座51b就是通过这种方法被发现的。虽然径向速度法十分精准,但一颗行星想要牵引恒星晃动,并产生足够探测的多普勒效应,需要行星对恒星有足够大的重心引力。这就意味着,径向速度法最适合探测离恒星近的类似木星的大质量行星,这也是“热木星”名字的由来。对于像地球这样质量不够,无法拖动恒星晃动的行星,可能就有点力不从心。针对这种情况,天文学家们又想到了另外一种简便的方法来寻找系外行星。凌星法“凌星法”的原理也很简单,当一颗系外行星刚好从它的恒星与我们之间经过时,恒星的光芒被其所挡,短时间内会变得暗淡一点,行星离开后又恢复如初,这一过程就称为“凌星事件”。当然造成恒星变暗,除了被行星所挡,还会有多种原因。比如,突然爆发一大团太阳黑子(温度低的区域),或食变双星(双恒星系统相互交叉挡住对方的光芒)都可能引起混淆。为此天文学家设定了两道“门槛”:一个确认,一个验证。
确认有足够多的数据来确定天体的质量。验证就是仔细检查一遍数据去除可能干扰因素,这些都是极其繁琐的工作。验证这些数据至少要满足观察到一个恒星的凌星间隔时间总是相同。凌星间隔时间即为行星公转周期,周期越长,它和恒星之间的距离也就越远,根据距离和恒星的光谱,我们还能确定这颗行星是否在其宜居带内。而恒星在此期间变得越暗,说明被挡住的光越多,而这颗行星就越大。自从2009年发射升空,NASA的开普勒空间望远镜前4年就一直盯着天鹅座和天琴座那一片星空,在15万颗恒星里,寻找着它们的凌星事件。截止2017年4月为止,它已为我们辨别了9500个可能的系外行星,其中还有不少刚好位于宜居带。当然这些大量的数据还需要天文学家们慢慢的挖掘与确认。凌星法也有一个致命的弱点,就是观测的行星必须要从它的恒星与我们之间经过才行。这种苛刻的要求,使得我们能发现的系外行星注定只占少数。不管是径向速度法,还是凌星法,都是天文学发展的智慧闪光。而当我们发现越来越多的系外行星之后,你会发现一个不争的事实:太阳系这样的行星系简直是凤毛菱角。但对于浩瀚的星空,无穷的宇宙,我们心中却永远回荡着一个无声的心愿:另一个世界,另一个地球。
为何我们热切地想探寻系外行星?对于真正向往星空的人,永远不会认为我们就是宇宙的唯一。正是这股热诚,毅然决然地将他们几十年的目光投向最深邃的夜空,思考行星起源背后的物理过程。对于今天来说,一个崭新的宇宙探寻才刚刚开始。不一样的世界,不一样的地球,还等待我们去发现。麦耶和奎洛兹的卓越贡献掀起的系外行星寻找热潮,只是为探索宇宙开了一个头,最终我们还是会去解答那个永恒的问题:地球之外是否还存在其他生命?这份对宇宙最深层的思考,还需要更多年轻的科学家传承下去,带着热诚,带着严谨,带着信仰,去探索宇宙的未知,发现全新的世界。如皮布尔斯说:“希望年轻人们怀揣着对科学的热爱踏入这一领域,即便奖项很诱人,但那不是你入行的原因,你应该被科学本身深深吸引。”最后,再次祝贺那些为人类科学发展而投入极大热情“仰望星尘,伸手摘星”的科学家们。
研究系外行星可以让人们发现更多的未知的世界,对于大家来说也是一种很好的机会。
意义就是让我们人类认识到地球以外的东西,认识到这个世界的广阔。
三位科学家因系外行星获诺贝尔物理学奖,研究系外行星究竟有很大意义,人类总会进入外太空的。