初三物理磁学知识总结

2025-01-06 02:48:03
推荐回答(2个)
回答1:

磁学基础
磁是什么?一般提起磁,有些人都觉得磁是较为少见的,好象主要就是磁石或磁铁吸引铁,如图1中磁铁吸引铁粉,和指南针指示南北方向,如图2中显示的古代指南器(司南)模型,可以指示南北方向,而把一般物质称为无磁性或非磁性。
情况真是这样吗?现代科学的发展已经表明这样的看法是不对的。现代科学研究和实际应用已经充分证实:任何物质都具有磁性,只是有的物质磁性强,有的物质磁性弱;任何空间都存在磁场,只是有的空间磁场高,有的空间磁场低。所以说包含物质磁性和空间磁场的磁现象是普遍存在的。
常见磁现象

我们的生活每时每刻都和磁性有关。没有它,我们就无法看电视、听收音机、打电话;没有它,连夜晚甚至都是一片漆黑。

人类虽然很早就认识到磁现象,但直到了现代,人们对磁现象的认识才逐渐系统化,发明了不计其数的电磁仪器,象电话、无线电、发电机、电动机等。如今,磁技术已经渗透到了我们的日常生活和工农业技术的各个方面,我们已经越来越离不开磁性材料的广泛应用。

由于物质的磁性既看不到,也摸不着,我们无法通过自己的五种感官(听觉、视觉、味觉、嗅觉、触觉)直接体会磁性的存在,但人们还是在实践中逐步揭开了其神秘面纱。磁铁总有两个磁极,一个是N极,另一个是S极。一块磁铁,如果从中间锯开,它就变成了两块磁铁,它们各有一对磁极。不论把磁铁分割得多么小,它总是有N极和S极,也就是说N极和S极总是成对出现,无法让一块磁铁只有N极或只有S极。

磁极之间有相互作用,即同性相斥、异性相吸。也就是说,N极和S极靠近时回相互吸引,而N极和N极靠近时回互相排斥。知道了这一点,我们就明白了为什么指南针会自动指示方向。原来,地球就是一块巨大的磁铁,它的N极在地理的南极附近,而S极在地理的北极附近。这样,如果把一块长条形的磁铁用细线从中间悬挂起来,让它自由转动,那么,磁铁的N极就会和地球的S极互相吸引,磁铁的S极和地球的N极互相吸引,使得磁铁方向转动,直到磁铁的N极和S极分别指向地球的S极和N极为止。这时,磁铁的N极所指示的方向就是地理的北极附近。
磁性与磁场

图3 磁天平仪

什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。图3是测量物质磁性的磁天平仪。

图4 磁力线

怎样表示物质磁性的强弱呢?为什么吸铁石并没有接触钢铁就可以吸引它?在一块硬纸板的下面放两块磁铁,并且让它们的S极相对。纸板上面撒一些细的铁粉末。看会发生什么现象?铁的粉末会自动排列起来,形成一串串曲线的样子。其中,N极和S极之间的曲线是连续的,也就是说曲线从N极直至S极。而S极和S极之间的曲线互相排斥,不能融合和贯穿。这种现象说明,磁铁的磁极之间存在某种联系。因此,我们可以假想,在磁极之间存在着一种曲线,它代表着磁极之间相互作用的强弱。这种假想的曲线称为磁力线,并规定磁力线从N极出发,最终进入S极。这样,只要有磁极存在,它就向空间不断地发出磁力线,而且离磁极近的地方磁力线密,而远处磁力线稀疏(图4)。铁粉末的排列形状就是磁力线的走向。

图5 磁通量

有了磁力线,我们就可以很方便地描述磁铁之间的相互作用。但是必须明白,磁力线是我们为了理解方便而假想的,实际上并不存在。在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱(图5)。单位截面上穿过的磁力线数目称为磁通量密度。

图6 特斯拉计

运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。图6是测量脉冲强磁场的磁通密度的特斯拉磁强计,简称特斯拉计。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉(Tesla,N)(1886~1943)是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。

物质的磁性不但是普遍存在的,而且是多种多样的,并因此得到广泛的研究和应用。近自我们的身体和周边的物质,远至各种星体和星际中的物质,微观世界的原子、原子核和基本粒子,宏观世界的各种材料,都具有这样或那样的磁性。

世界上的物质究竟有多少种磁性呢?一般说来,物质的磁性可以分为弱磁性和强磁性,再根据磁性的不同特点,弱磁性又分为抗磁性、顺磁性和反铁磁性,强磁性又分为铁磁性和亚铁磁性。这些都是宏观物质的原子中的电子产生的磁性,原子中的原子核也具有磁性,称为核磁性。但是核磁性只有电子磁性的约千分之一或更低,故一般讲物质磁性和原子磁性都主要考虑原子中的电子磁性。原子核的磁性很低是由于原子核的质量远高于电子的质量,而且原子核磁性在一定条件下仍有着重要的应用,例如现在医学上应用的核磁共振成像(也常称磁共振CT,CT是计算机化层析成像的英文名词的缩写),便是应用氢原子核的磁性。
磁性的来源

图7 原子

物质的磁性来自构成物质的原子,原子的磁性又主要来自原子中的电子。那么电子的磁性又是怎样的呢?从科学研究已经知道,原子中电子的磁性有两个来源。一个来源是电子本身具有自旋,因而能产生自旋磁性,称为自旋磁矩;另一个来源是原子中电子绕原子核作轨道运动时也能产生轨道磁性,称为轨道磁性。我们知道,物质是由原子组成的,而原子又是由原子核和位于原子核外的电子组成的。原子核好象太阳,而核外电子就仿佛是围绕太阳运转的行星。另外,电子除了绕着原子核公转以外,自己还有自转(叫做自旋),跟地球的情况差不多。一个原子就象一个小小的“太阳系”(图7)。另外,如果一个原子的核外电子数量多,那么电子会分层,每一层有不同数量的电子。第一层为1s,第二层有两个亚层2s和2p,第三层有三个亚层3s、3p和3d,依此类推。如果不分层,这么多的电子混乱地绕原子核公转,是不是要撞到一起呢?

图8 向上与向下
自转的电子数相等

在原子中,核外电子带有负电荷,是一种带电粒子。电子的自转会使电子本身具有磁性,成为一个小小的磁铁,具有N极和S极。也就是说,电子就好象很多小小的磁铁绕原子核在旋转。这种情况实际上类似于电流产生磁场的情况。

既然电子的自转会使它成为小磁铁,那么原子乃至整个物体会不会就自然而然地也成为一个磁铁了呢?当然不是。如果是的话,岂不是所有的物质都有磁性了?为什么只有少数物质(象铁、钴、镍等)才具有磁性呢?原来,电子的自转方向总共有上下两种。在一些数物质中,具有向上自转和向下自转的电子数目一样多,如图8所示,它们产生的磁极会互相抵消,整个原子,以至于整个物体对外没有磁性。而低于大多数自转方向不同的电子数目不同的情况来说,虽然这些电子所磁矩不能相互抵消,导致整个原子具有一定的总磁矩。但是这些原子磁矩之间没有相互作用,它
图9 向上与向下
自转的电子数不等

们是混乱排列的,所以整个物体没有强磁性。只有少数物质(例如铁、钴、镍),它们的原子内部电子在不同自转方向上的数量不一样,这样,在自转相反的电子磁极互相抵消以后,还剩余一部分电子的磁矩没有被抵消,如图9所示。这样,整个原子具有总的磁矩。同时,由于一种被称为“交换作用”的机理,这些原子磁矩之间被整齐地排列起来,整个物体也就有了磁性。当剩余的电子数量不同时,物体显示的磁性强弱也不同。例如,铁的原子中没有被抵消的电子磁极数最多,原子的总剩余磁性最强。而镍原子中自转没有被抵消的电子数量很少,所有它的磁性比较弱。
抗磁性和抗磁共振(回旋共振)

图10 半导体单晶锗(Ge)
的回旋(抗磁)共振谱

物质的抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物质的磁化率约为负百万分之一(-10-6)。常见的抗磁物质:水、金属铜、碳(C)和大多数有机物和生物组织。抗磁物质的一个重要特点是磁化率不随温度变化。物质抗磁性的应用主要有:由物质的磁化率研究相关的物质结构是磁化学的一个重要研究内容;一些物质如半导体中的载(电)流子在一定的恒定(直流)磁场和高频磁场同时作用下会发生抗磁共振(常称回旋共振),由此可测定半导体中载流子(电子和空穴)的符号和有效质量(如图10所示);由生物抗磁(性)组织的磁化率异常变化可推测该组织的病变(如癌变)。
顺磁性和顺磁微波量子放大器

物质的顺磁性是另一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。
图11 半导体单晶硅(Si)
的回旋(抗磁)共振谱

常见的顺磁物质有氧气、金属铂(白金)、一氧化氮、含掺杂原子的半导体{如掺磷(P)或砷(As)的硅(Si)}、由幅照产生位错和缺陷的物质等。还有含导电电子的金属如锂(Li)、钠(Na)等,这些顺磁(性)金属的顺磁磁化率却与温度无关,这种金属的特殊顺磁性是可以用量子力学解释的。顺磁性虽是一种弱磁性,但也有其重要的应用,例如,从顺磁物质的顺磁性和顺磁共振可以研究其结构,特别是电子组态结构;利用顺磁物质的绝热退磁效应可以获得约1-10-3K的超低温度,这是一种产生超低温度的重要方法;在顺磁性和顺磁共振基础上发展起来的顺磁微波量子放大器,不但是早期研制和应用的一种超低噪声的微波放大器,而且也促进了激光器的研究和发明,图11是一种顺磁微波量子放大器的示意图;在生命科学方面,如血红蛋白和肌红蛋白在未同氧结合时为顺磁性,但在同氧结合后便转变为抗磁性,这两种弱磁性的相互转变就反映了生物体内的氧化和还原过程,因而其磁性研究成为这种重要生命现象的一种研究方法;如果目前医学上有着重要应用的核磁共振成像技术发展到电子顺磁共振成像技术,可以预料利用这一技术便可显示生物体内顺磁物质(如血红蛋白和自由基等)的分布和变化,这会在生命科学和医学上得到重要的应用。

回答2:

这么抽象的问题....
看到你的不嫁unlessVae就给你点面子拉.我也是他FAN

磁学似乎还是比较死板的.中考分数不是很多.只要把一些基础的看好就好了.重要的是功率这些,分数比较多.磁学多看书,书上有的看好就OK了.做体功和力有关的多看些,那个比较重要.