设弹簧恢复原长时AB速度大小为v1,C速度大小为v2
从烧断细线到弹簧恢复原长,AB都未分离,整个过程中ABC和弹簧组成的系统动量和机械能都守恒,但B、C和弹簧组成的系统因为有A对B的力做功,因此动量不守恒,机械能也不守恒
由动量守恒:
0=2mv1-mv2
由能量守恒:
E=1/2*2mv1^2+1/2mv2^2
联立两式可解得A的动能Ea=1/2mv1^2=1/6E,Ec=1/2mv2^2=2E/3
当弹簧回复原长瞬间,AB未分离,因此速度都是v1,由于B与弹簧相连,BC又不粘连(题目只是说紧靠,不是粘合),B接下来拉伸弹簧而减速,A保持v1不变,于是AB分离
分离后,B、C和弹簧组成的系统动量守恒,机械能守恒,当BC共速(设为v3)时,弹簧的弹性势能最大(类似于完全非弹性碰撞)
由能量守恒:
1/2mv1^2+1/2mv2^2=1/2*2mv3^2+Ep
因为1/2mv1^2+1/2mv2^2=E-Ea=5/6E
所以Ep小于5/6E
因此我觉得正确答案是B而不是C
如果还有不懂,欢迎追问~
在A与B分离的瞬间是B和C所能达到的最大速度,此时的弹簧处于原长,再下一刻时,弹簧将伸长,B的速度将减小,A与B分离,且在A、B即将分离的那一刻,弹簧的所有弹性势能全部转化为三个球的动能,C的动能就是E/3.
没图你说个啥???