证明:
记g(x)=ln(x+1)-x,x>0
g'(x)=-x/(x+1)<0,g(x)↓
又g(x)可在x=0处连续则
g(x)
取1/n^4(>0)替换x有
ln(1+1/n^4)<1/n^4<1/n^2<1/[n(n-1)]=1/(n-1)-1/n,n≥2
则 ln(1+1/2^4)+ln(1+1/3^4)+...+ln(1+1/n^4)<(1-1/2)+(1/2-1/3)+...+[1/(n-1)-1/n]=1-1/n<1
即 (1+1/2^4)*(1+1/3^4)*...*(1+1/n^4)