(1)nA(n+1)=(n+1)An+2n(n+1);两边同除n(n+1)得到A(n+1)/(n+1)=An/n+2;A(n+1)/(n+1)-An/n=2;所以{An/n}是公差为2,是首项是A1/1=A1=1的等差数列,所以 An/n=1+2(n-1)=2n-1;An=2n^2-n(2)Bn=An*n=2n^3-n^2;Bn-2=