1×2+2×3+3×4......+19×20
=(1×2+2×3)+(3×4+4×5)......(17×18+18×19)+19×20
=2×4+4×8+6×12......18×36+19×20
=8(1²+2²+3²+...+9²)+19×20
=8×9×(9+1)×(2×9+1)÷6+380
=2660
或者
1²+2²+3²+……n²=n(n+1)(2n+1)/6
1+2+3+……+n=(n+1)n/2
应用这个结论
1×2+2×3+3×4......+19×20
=(1+1)×1 +2×(2+1)+……+19×(19+1)
=1²+2²+……19²+1+2+3+……19
=19*20 *39/6 +19(19+1)/2
=19*10*13+19*10
=19*10*14
=2660
1×2+2×3+3×4+......+19×20
=2+6+12+20+30+42+56+72+90+110+132+156+182+210+240+272+314+350+388
=2660
=21*20*19/3
=20*7*19
=2660
2660,没有简便算法...
1×2+2×3+3×4+......+19×20
=1^2+1+2^2+2+3^2+……+19^2+19
=19*20*39/6+(1+19)*19/2
=2660