y=x²
psinθ=p²cos²θ
p=sinθ/cos²θ
y=1
psinθ=1
p=1/sinθ
D={(p,θ)0≤p≤sinθ/cos²θ,0≤θ≤π/4}
U{(p,θ)0≤p≤1/sinθ,π/4≤θ≤3π/4}
U{(p,θ)0≤p≤sinθ/cos²θ,3π/4≤θ≤π}
所以
原式=∫∫D f(pcosθ,psinθ)pdpdθ
=∫(0,π/4)dθ∫(0,sinθ/cos²θ)f(pcosθ,psinθ)pdp
+∫(π/4,3π/4)dθ∫(0,1/sinθ)f(pcosθ,psinθ)pdp
+∫(3π/4,π)dθ∫(0,sinθ/cos²θ)f(pcosθ,psinθ)pdp