解:设x1+x2+x3最大为a,则x4≥x1+3,x5≥x2+3,x6≥x3+3,x7≥x3+4,x1+x2+x3+x4+x5+x6+x7=159≥a+(a+3+3+3)+a/3 +4,解得:a≤62又4/7 ,所以x1+x2+x3的最大值为62.
x4+x5+x6+x7>=4*x3+1+2+3+4=4*x3+10x1+x2+x3<=3*x3-1-2=3*x3-3159>=7*x3+7x3=22x1+x2+x3=61
123