设√3=t,则方程变为:x²-(1+2t)x+(t²+t)=0整理得到,t²+(1-2x)t+(x²-x)=0∴(t-x)(t+1-x)=0∴t=x 或 t=x-1∴x=√3或x=√3+1
设t=√3,则原方程变形为x2-(1+2t)x= t2+t=0x2-x-2tx+t2+t=0(x2-2tx+t2)-(x-t)=0(x-t)2-(x-t)=0(x-t)(x-t-1)=0X=t或x=t+1所以x=√3或x=√3+1