n>=2时
1/2>=1/2>1/4>1/6>....1/2n
所以
n/2>1/2+1/4+...+1/2n
那么肯定有:
n/2+n/12+n/30+...n/(2n*(2n-1))>1/2+1/4+...+1/2n
而 1/(2n*(2n-1))=1/(2n-1)-1/2n
所以
n/2+n/12+n/30+...n/(2n*(2n-1))
=n(1-1/2+1/3-1/4+1/5-1/6+....+1/(2n-1)-1/2n)
=n(1+1/3+1/5+...+1/(2n-1))-n(1/2+1/4+...+1/2n)>1/2+1/4+...+1/2n
即
n(1+1/3+1/5+...+1/(2n-1))>(n+1)(1/2+1/4+...+1/2n)
也就是
(1/(n+1))*(1+1/3+1/5+...+1/(2n-1))>(1/n)*(1/2+1/4+...+1/2n)
要证1/(n+1)*(1+1/3+1/5+...+1/2n-1)>1/n*(1/2+1/4+1/6+...+1/2n),等价于n*(1+1/3+1/5+...+1/2n-1)>(n+1)(1/2+1/4+1/6+...+1/2n),左右各加上n*(1/2+1/4+```````+1/2n),那么左边就是n(1+1/2+1/3+1/4+``````+1/2n),右边是(2n+1)(1/2+1/4+1/6+...+1/2n)=(n+1/2)(1+1/2+1/3+````+1/n),即等价于证明n*(1+1/2+1/3+1/4+``````+1/2n)>(2n+1)(1/2+1/4+1/6+...+1/2n)=(n+1/2)(1+1/2+1/3+````+1/n),消去相同的项,等价于证明[n/(n+1)+n/(n+2)+````+n/(2n)]>1/2*(1+1/2+1/3+````+1/n),只须证明每一项都是前者大于后者,即n/(n+k)>1/2k,这个可以通过真分数不等式,或者直接通分得证。故本题得证