带入N值即可
自然数的n次方和公式
1^0+2^0+...+n^0=n
1^1+2^1+...+n^1=(n+1)*n/2=(n^2+n)/2
1^2+2^2+...+n^2=n*(n+1)*(2n+1)/6=(2*n^3+3*n^2+n)/6
1^3+2^3+...+n^3=n^2*(n+1)^2/4=(n^4+2*n^3+n^2)/4
1^4+2^4+...+n^4=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30=(6*n^5+15*n^4+10*n^3-n)/30
1^5+2^5+...+n^5=n^2*(n+1)^2*(2*n^2+2*n-1)/12==(2*n^6+6*n^5+5*n^4-n^2)/12
1^6+2^6+...+n^6=(6*n^7+21*n^6+21*n^5-7*n^3+n)/42
1^7+2^7+...+n^7=(3*n^8+12*n^7+14*n^6-7*n^4+2*n^2)/24
1275.运算过程:(A首+A末)*项数再除2也就是(《1+50》*50)÷2=1275
50+(49+1)+(48+2)+(47+3)+(46+4)+(45+5)+(44+6)+(43+7)+(42+8)+(41+9)+……+(26+24)+25=50*25+25=1275