△ABD和△AEC中,
∠BAD=∠EAC=90º
AB=AC,BD=EC
所以 △BAD≌△EAC
故:∠ABD=∠ACE 即:∠ABD=∠FCD ,又因∠FDC=∠ADB
所以:∠BAD=∠DFC=90º 即:DF⊥EC ∴BF⊥EC
AB=AC ∠BAC=∠CAE=90° BD=CE
△BDE≌△CEA
∠BDA=∠E
∠BDA+∠EBF=90°
∴∠EBF+∠E=90°
∴BF⊥CE
∵BA=CA,∠BAC=∠EAC,BD=CE,∴△ABD≌△EAC ∴∠ABD=∠DCF 又∵∠ADB=∠FDC
∴∠BAD=∠CFA 即BF⊥CE
照顾点呗~