高炉中硫的来源进入高炉中的硫来自其原燃料,如矿石、烧结矿、球团矿、焦炭、熔剂和喷吹燃料等。通常以焦炭带入硫量最多,约占入炉总硫量的60%~80%。焦炭中的硫主要以有机硫CnSm和灰分中的硫化物和硫酸盐形式存在。在天然矿石和熔剂中,硫以黄铁矿(FeS2)和硫酸盐(CaSO4,BaSO4等)形态存在。烧结矿和球团矿中的硫以FeS和CaS形态存在。冶炼每吨生铁时炉料所带入的总硫量(见硫负荷)一般为4~6kg。
高炉中硫的行为炉料中的硫随着炉料下降和温度升高,一部分逐渐挥发进入煤气。焦炭中的有机硫在炉身下部到炉腹有30%~50%以CS及COS等化合物形态先挥发,其余则在气化反应和风口前燃烧时生成SO2、H2S和其他气态化合物进入煤气。矿石和熔剂中的硫也有一部分经分解或反应生成硫蒸气或SO2进入煤气。进入气相的硫在上升过程中少部分随煤气逸出高炉,大部分又被下降的炉料吸收。在高炉的高温区和低温区之间形成硫的循环。高炉中炉料和铁水、炉渣之间硫的分配见图。在块状带,矿石在200~900℃时吸收硫较少,在1000℃左右时吸收加快。在软熔带,炉料的吸硫条件好,硫含量增大。在滴落带,熔化滴落的渣、铁剧烈地吸收煤气中的硫.同时发生硫由铁向渣中转移。在炉缸中,铁滴穿过渣层具有良好的反应条件,脱硫反应大量进行。在炉缸聚集的渣铁界面,脱硫反应继续进行,直到出铁时,铁口通道内下渣与铁水仍然进行着铁的脱硫。生产实践和研究表明,在高炉冶炼炼钢生铁时,有5%左右的硫是随煤气逸出高炉的,而在冶炼铸造生铁时此值可达到10%~15%。在高炉冶炼锰铁、硅铁等铁合金时,因焦比高,炉顶温度高而使随煤气逸出高炉的硫量增大,但也在50%以下,其余的硫分配在炉渣与生铁之间。因此高炉的脱硫主要是靠炉渣在上述三处脱去铁水中的硫。
渣脱硫的化学反应硫在熔渣中以多种硫化物形态存在,几种主要的硫化物按其稳定性由小到大的排列是FeS、MnS、MgS、CaS,其中FeS还能溶于铁水。炉渣的脱硫反应就是渣中的CaO、MgO等碱性氧化物与铁水中的硫反应生成不溶于铁水而溶于渣的稳定化合物CaS,MgS等,从而使铁水中的硫转移到渣中而被脱除的。在高炉还原性气氛的情况下,炽热焦炭中的硫和溶于铁水中的C发生脱硫反应:
(CaO)+[S]+[C]一(CaS)+CO(1)
或(CaO)+[FeS]+[C]一(CaO)+[Fe]+CO
或可写作(O2— )+[S]+[C]一(S2— )+CO(2)
式(1)可以用分子理论来说明反应机理,即铁水中的FeS通过渣铁界面扩散溶到熔渣中,与熔渣中的CaO反应生成CaS和FeO,反应生成的FeO再被C还原成Fe,生成的C0离开反应界面进入煤气。式(2)可以用离子理论来说明反应机理,在液态渣铁界面处进行着离子迁移过程,铁水中呈中性的原子硫,在渣铁界面处吸收熔渣中的电子变为硫负离子S2—进入熔渣中,而熔渣中的氧负离子O2—一在界面处失去电子变成中性原子进入铁水中并与铁水中C化合生成CO,从铁水中排出。由于铁水中有Si,Mn等其他元素存在,这些元素也与铁水中的S相互作用以耦合反应形式脱硫:
2[S]+ [Si] +2(CaC))一2(CaS)+(Si02)(3)
[S]+[Mn]+(CaO)一(CaS)+(MnO)(4)
或可写作2[S]+[Si]+2O2—一2S2—+(SiO2)(5)
[S]+[Mn]+O2——S2—+(MnO)(6)
硫在高炉渣和铁水之间的分配在高炉中脱硫反应(1)达到平衡时,硫在炉渣和铁水之间质量百分浓度的比值称为硫的分配比,是衡量炉渣脱硫的极限能力,生产和研究中把它简化为并称之为硫的分配系数。从高炉渣脱硫的热力学分析得出Ls是反应平衡常数Ks、硫在铁水中的活度系数、炉渣氧势和以碱度为代表的炉渣成分的函数。在高炉冶炼的炉缸温度1500oC条件下,铁水中硫的活度系数在4~6之间,渣中氧化铁含量0.5%左右,炉渣碱度1.0左右。反应达到平衡时的Ls可达到200以上。但实际生产中,受条件的限制,脱硫反应达不到平衡,Ls值只能达到20~50,最高也不超过80。因此在高炉炼铁中要努力改善脱硫的热力学和动力学条件,使Ls值提高,铁水中[S降得更低。
炉渣的化学脱硫,动力学条件是高温、高碱度、高渣量、低氧化亚铁含量。
炉渣脱硫