一章 有理数
1.大于0的数叫正数(positive number),在正数前面加上“-”号的是负数(negative number),0既不是正数,也不是负数。
2.可以写成分数形式的数,都叫做有理数(rational number),正数当作分母为1.
3.用一条直线上的点表示数,这条直线叫数轴(number axis)。
4.只有符号不同的两个数叫相反数(opposite number)。
5.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
6.一个正数的绝对值是他本身,一个负数的绝对值是它的相反数,0的绝对值是0.
7.正数大于0,0大于负数,正数大于负数。
8.两个负数,绝对值大的反而小。
9.有理数加法法则:同好两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
10.两个数相加,交换加数的位置,和不变。(加法交换律)
11.三个数相加,先把前两个数相加,或先把后两个数相加,和不变。(加法结合律)
12.减去一个数,等于加上这个数的相反数。a-b=a+(-b)
13.两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
14.乘积是1的两个数互为倒数。
15.两个数相乘,交换因数的位置,积相等。(乘法交换律)
16.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(乘法结合律)
17.一般的,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。(分配率)
18.除以一个不等于0的数,等于乘这个数的倒数。a/b=a*1/b(b不等于0)
19.有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照“先乘除,后加减”的顺序。
20.求 n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power),如an中,a叫做底数(base number),n叫做指数(exponent)。
21.负数的奇次幂是负数,负数的偶次幂是正数。
22.正数的任何次幂都是正数,0的任何正整数次幂都是0.
23.有理数的混合运算:先乘方,再乘除,最后加减:同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
24.科学记数法:567 000 000=5.67*108.
第二章 整式的加减
1.单项式(monomial):如数或字母的积的式子,单独的一个数或一个字母也叫单项式。单项式中的数字因数叫做系数(coefficient),如100t,vt,-n中,系数为100,1,-1.
2.一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a momomial),如100t,字母t的指数是1,100t是一次单项5式,在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
3.多项式(polynomial):几个单项式的和。每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
4.多项式里次数最高项的次数,叫做这个多项式的次数(degree of polynomial),如2x-3,次数最高的项是一次项2x,这个多项式的次数是1;多项式x2+2x+18中次数最高的项是二次项x2,这个多项式的次数是2.
5. 单项式与多项式统称整式(integral expression)。
6.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数 项也是同类项。
7.把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
8.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9.整式加减法运算法则:一般的,整式的加减,如果右括号就先去括号,然后再合并同类项。
第三章 一元一次方程
1. 含有未知数的等式叫方程(equation)。
2. 只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程(linear equation with one unknown)。
3. 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
4. 等式两边加(或减)同一个数(或式子),结果仍相等;等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
5. 把等式一边的某项变号后移到另一边,叫做移项。
第四章 图形认识初步
1. 两点确定一条直线。
2. 当两条不同的直线有一个公共点时,就称这两条直线相交(intersection),这个公共点就叫做它们的交点(point of intersection)。
3. 两点之间,线段最短。
4. 连接两点间的线段的长度,就叫这两点的距离(distance)。
5. 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
6. 如果两个角的和等于90度,就说这两个角互为余角(complementary angle),即其中每一个角是另一个角的余角。
7. 如果两个角的和等于180度,就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角。
8. 等角的补角相等,等角的余角相等。
二元一次方程、一元一次不等式、
不等式组的解法(应该不会考应用) 全等三角形(两次全等是重点) 二元一次方程(解法 应用题)
证明三角形全等
四种变换怎么描述
中垂线,角平分线定理及作图
二元一次方程,特别是应用题,要多练
因式分解(刚开始会有不适应)
整式的乘除(是因式分解的逆运算)要注意解题
分式方程要会解特别是应用题
因式分解和整式的乘除是分式方程的关键,所以要学好
第一章 有理数
1.大于0的数叫正数(positive number),在正数前面加上“-”号的是负数(negative number),0既不是正数,也不是负数。
2.可以写成分数形式的数,都叫做有理数(rational number),正数当作分母为1.
3.用一条直线上的点表示数,这条直线叫数轴(number axis)。
4.只有符号不同的两个数叫相反数(opposite number)。
5.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
6.一个正数的绝对值是他本身,一个负数的绝对值是它的相反数,0的绝对值是0.
7.正数大于0,0大于负数,正数大于负数。
8.两个负数,绝对值大的反而小。
9.有理数加法法则:同好两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
10.两个数相加,交换加数的位置,和不变。(加法交换律)
11.三个数相加,先把前两个数相加,或先把后两个数相加,和不变。(加法结合律)
12.减去一个数,等于加上这个数的相反数。a-b=a+(-b)
13.两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
14.乘积是1的两个数互为倒数。
15.两个数相乘,交换因数的位置,积相等。(乘法交换律)
16.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(乘法结合律)
17.一般的,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。(分配率)
18.除以一个不等于0的数,等于乘这个数的倒数。a/b=a*1/b(b不等于0)
19.有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照“先乘除,后加减”的顺序。
20.求 n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power),如an中,a叫做底数(base number),n叫做指数(exponent)。
21.负数的奇次幂是负数,负数的偶次幂是正数。
22.正数的任何次幂都是正数,0的任何正整数次幂都是0.
23.有理数的混合运算:先乘方,再乘除,最后加减:同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
24.科学记数法:567 000 000=5.67*108.
第二章 整式的加减
1.单项式(monomial):如数或字母的积的式子,单独的一个数或一个字母也叫单项式。单项式中的数字因数叫做系数(coefficient),如100t,vt,-n中,系数为100,1,-1.
2.一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a momomial),如100t,字母t的指数是1,100t是一次单项5式,在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
3.多项式(polynomial):几个单项式的和。每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
4.多项式里次数最高项的次数,叫做这个多项式的次数(degree of polynomial),如2x-3,次数最高的项是一次项2x,这个多项式的次数是1;多项式x2+2x+18中次数最高的项是二次项x2,这个多项式的次数是2.
5. 单项式与多项式统称整式(integral expression)。
6.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
7.把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
8.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9.整式加减法运算法则:一般的,整式的加减,如果右括号就先去括号,然后再合并同类项。
第三章 一元一次方程
1. 含有未知数的等式叫方程(equation)。
2. 只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程(linear equation with one unknown)。
3. 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
4. 等式两边加(或减)同一个数(或式子),结果仍相等;等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
5. 把等式一边的某项变号后移到另一边,叫做移项。
第四章 图形认识初步
1. 两点确定一条直线。
2. 当两条不同的直线有一个公共点时,就称这两条直线相交(intersection),这个公共点就叫做它们的交点(point of intersection)。
3. 两点之间,线段最短。
4. 连接两点间的线段的长度,就叫这两点的距离(distance)。
5. 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
6. 如果两个角的和等于90度,就说这两个角互为余角(complementary angle),即其中每一个角是另一个角的余角。
7. 如果两个角的和等于180度,就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角。
8. 等角的补角相等,等角的余角相等。