一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高; 3、接线简单、控制方便、价格低; 4、有级调速,级差较大,不能获得平滑调速; 5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 1、效率高,调速过程中没有附加损耗; 2、应用范围广,可用于笼型异步电动机; 3、调速范围大,特性硬,精度高; 4、技术复杂,造价高,维护检修困难。 5、本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上; 3、调速装置故障时可以切换至全速运行,避免停产; 4、晶闸管串级调速功率因数偏低,谐波影响较大。 5、本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。
五、定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点: 1、调压调速线路简单,易实现自动控制; 2、调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 3、调压调速一般适用于100KW以下的生产机械。
六、电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。 电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点: 1、装置结构及控制线路简单、运行可靠、维修方便; 2、调速平滑、无级调速; 3、对电网无谐影响; 4、速度失大、效率低。 5、本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。
七、液力耦合器调速方法 液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速
对于步进电机调速系统的设计,应当先了解其工作原理:由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备----步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。另一类是用硬件构成的环形分配器,通常称硬环形分配器。功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:
(1) 换相顺序的控制
通电换相这一过程称为脉冲分配。例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为A→B→C→A,通电控制脉冲必须严格按照这一顺序分别控制A、B、C相的通断。三相双三拍的通电顺序为AB→BC→CA→AB,三相六拍的通电顺序为A→AB→B→BC→C→CA→A。
(2) 步进电机的换向控制
如果给定工作方式正序换相通电,步进电机正转。若步进电机的励磁方式为三相六拍,即A→AB→B→BC→C→CA→A。如果按反序通电换相,即A→AC→C→CB→B→BA→A,则电机就反转。其他方式情况类似。
(3) 步进电机的速度控制
如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整送给步进电机的脉冲频率,就可以对步进电机进行调试。
(4) 步进电机的起停控制
步进电机由于其电气特性,运转时会有步进感。为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。
(5) 步进电机的加减速控制
在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于惯性跟不上电信号的变化,这时就会产生堵转和失步现象。所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。在一个实际的控制系统中,要根据负载的情况来选择步进电机。步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地对电机进行加减速控制。加速过程有突然施加的脉冲启动频率f0。步进电机的最高启动频率(突跳频率)一般为0.1KHz到3~4KHz,而最高运行频率则可以达到N*102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。
在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。加速时,使脉冲频率增高,减速则相反。如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。速度从v1~v2变化,如果是线性增加,则按给定的斜率加P减速;如果是突变,则按阶梯加速处理。在此过程中要处理好两个问题:
①速度转换时间应尽量短。为了缩短速度转换的时间,可以采用建立数据表的方法。结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。通过在不同的阶段调用相应的定时初值,就可控制电机的运行。定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。
②保证控制速度的精确性。要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。
(6) 步进电机的换向控制
步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方向的第一个脉冲前发出。对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。在某一高速下的正、反向切换实质包含了降速→换向→加速3个过程。
步进电机有如下特点:
① 步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。
② 由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。同时,它也可以有角度反馈环节组成高性能的闭环数控系统。
③ 步进电机的动态响应快,易于启停、正反转及变速。
④ 速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。
⑤ 步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。
⑥ 步进电机自身的噪声和振动比较大,带惯性负载的能力强。
据其工作原理可知,只要改变给电机没相定子绕组脉冲的平率就能实现对步进电机转速的控制.
步进电动机是一种将脉冲信号变换成相应的角位移(或线位移)的电磁装置,是一种特殊的电动机。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入肘步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。
在电动机定子上有a、b、c三对磁极,磁极上绕有线圈,分别称之为a相、b相和c相,而转子则是一个带齿的铁心,这种步进电动机称之为三相步进电动机。如果在线圈中通以直流电,就会产生磁场,当a、b、c三个磁极的线圈依次轮流通电,则a、b、c三对磁极就依次轮流产生磁场吸引转子转动。
1、可以用数字信号直接进行开环控制,整个系统简单廉价。
2、位移与输入脉冲信号数相对应,步距误差不长期积累,可以组成结构较为简单又具有一定精度的开环控制系统,也可在要求更高精度的组成闭环控制系统。
3、无刷,电动机本体部件少,可靠性高。
4、易于起动,停止,正反转及速度响应性好。
5、停止时可有自锁能力。
6、步距角可在大范围内选择,在小步距情况下,通常可以在超低转速下高转距稳定运行,通常可以不经减速器直接驱动负载。
7、速度可在相当宽范围内平滑调节,同时用一台控制器控制几台步进电动机可使它们完全同步运行。
8、步进电动机带惯性负载能力较差。
9、由于存在失步和共振,步进电机的加减速方法根据利用状态的不同而复杂化。
10、需要专用的伺服控制器控制,不能直接使用普通的交直流电源驱动。
PLSY K1000 K1000 Y0 你看这个指令 通过改变第一个K1000的数值就可以调速 ,第二个K1000代表脉冲个数 Y0代表脉冲输出端口 请采纳