移项,将带根号的单独放到等号一边,然后两边平方,化简之后即可得到。
x+y+√(x^2+y^2)=2
√(x^2+y^2)=2-(x+y)
两边平方,
x^+y^2=4-4(x+y)+(x+y)²=4-4(x+y)+x^2+y^2+2xy
4(x+y)=4+2xy
2(x+y)-xy=2
x+y+√(x²+y²)=2
√[x²+y²+2xy-2xy]=2-(x+y)
√[(x+y)²-2xy]=2-(x+y)
(x+y)²-2xy=[2-(x+y)]²
(x+y)²-2xy=4-4(x+y)+(x+y)²
4(x+y)-2xy=4
得到2(x+y)-xy=2