计算机中,并没有原码和反码,只是使用补码,代表正负数。
使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。
------------
比如钟表,时针转一圈,周期是 12 小时。
倒拨 3 小时,可以用正拨 9 小时代替。
9,就称为-3 的补数。
计算方法:12-3 = 9。
对于分针,倒拨 X 分,就可以用正拨 60-X 代替。
------------
如果,限定了两位十进制数 (0~99),周期就是 100。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
忽略进位,只取两位数,这两种算法,结果就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,大家可以自己求!
求出了负数的补数,就可用加法,代替减法了。
------------
计算机中使用二进制,补数,就改称为【补码】。
常用的八位二进制是:0000 0000~1111 1111。
它们代表了十进制:0~255,周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128,补码是 1000 0000 = 128。
计算公式:负数的补码=256+这个负数。
正数,直接运算即可,不需要求补码。
也可以说,正数本身就是补码。
------------
补码的应用如: 7-3 = 4。
用补码的计算过程如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得: (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,作为结果即可。
这就是:使用补码,加法就代替了减法。
所以,在计算机中,有一个加法器,就够用了。
原码和反码,都没有这种功能。
------------
原码和反码,毫无用处。计算机中,根本就没有它们。
在计算机系统中,数值,一律用补码来表示和存储。
只要会求补码,就够用了。
-----------------
计算机,所计算的位数,是固定的。
八位机就是八位,16 位机就是 16。。。
位数,限定了之后,即使出现了进位,也不再考虑。
在这个前提下,加法、减法,就可以互换。
比如,两位十进制是 00~99。
周期是 100(即一百)。
减一,就和 +99,作用相同。
25 - 1 = 24
25 + 99 = (一百) 24
舍弃进位,加法,就能起“减法”的作用。
99,就是-1 的补数。
借助于补数,加减法,就可以统一为加法。
借助于补码,就可以简化计算机的硬件。
八位的二进制是:0000 0000~1111 1111(十进制255)。
周期是 2^8 = 256。
-1 的补码就是:256-1 = 255(二进制 1111 1111)。
-2 的补码就是:256-2 = 254(二进制 1111 1110)。
。。。
公式:
负数的补码 = 周期 + 该负数。
零和正数,不存在补码,直接就可以参加计算。
补码,就是这么计算出来的。
补码,和原码反码,毫无关系。
计算机中,也并没有原码反码,因此,就不必讨论它们。