如图所示
d[ln(1+x²)]=[1/(1+x²)]·(1+x²)'dx
=[1/(1+x²)]·2xdx
=[2x/(1+x²)]dx
代入到原式就OK啦——你是不是自己想多了!?这么简单也没看出来?
∫(0->1) ln(1+x^2) dx
=[xln(1+x^2)](0->1) - ∫(0->1) xdln(1+x^2)
=ln2-∫(0->1) x[2x/(1+x^2) ] dx
=ln2-2 ∫(0->1) x^2/(1+x^2) dx
=ln2-2 ∫(0->1) (1+x^2-1)/(1+x^2) dx
=ln2-2 ∫(0->1) [ 1- 1/(1+x^2)] dx
=ln2-2[ x- arctanx] |(0->1)
=ln2-2(1- arctan1)
=ln2-2(1- π/4)