在数列{an}中,a1等于1,an+1等于(1+1⼀n)an+(n+1)⼀2^n

2024-12-23 05:17:25
推荐回答(1个)
回答1:

(1)a(n+1)=(n+1)/n*an+(n+1)/2^n
所以a(n+1)/(n+1)=an/n+1/2^n
b(n+1)=bn+1/2^n
所以bn=1+1/2+1/2^2+……+1/2^(n-1)=2-1/2^(n-1)
(2)an=2n-n/2^(n-1)
{2n}的前n项和为n(n+1)
设{n/2^(n-1)}的前n项和为Tn
Tn=1/1+2/2+3/2^2+4/2^3+……+(n-1)/2^(n-2)+n/2^(n-1) ①
1/2Tn=1/2+2/2^2+3/2^3+4/2^4+……+(n-1)/2^(n-1)+n/2^n ②
①-②,得1/2Tn=1+1/2+1/2^2+1/2^3+……+1/2^(n-1)-n/2^n
=2-1/2^(n-1)-n/2^n
=2-(n+2)/2^n
所以Tn=4-(n+2)/2^(n-1)
Sn=n(n+1)-4+(n+2)/2^(n-1)