设f(x)=1⼀3x^3+1⼀2x^2+2ax,若f(x)在(2⼀3,正无穷)上存在单调递增区间,求a的取值范围

2024-12-19 13:50:13
推荐回答(5个)
回答1:

解:
函数f(x)=(1/3)x³+(1/2)x²+2ax.
求导,f'(x)=x²+x+2a.
由题设可知:
关于x的不等式x²+x+2a≥0.
其解集M与区间(2/3, +∞)的交集非空。
或者说,不等式2a≥-(x²+x)
必有解在区间(2/3, +∞)内。
∴问题可化为,求函数g(x)=-x²-x在(2/3, +∞)上的最大值(或上确界)。
显然,在(2/3, +∞)上,恒有:g(x)<g(2/3)=-10/9.
∴应有:2a≥-10/9
∴a≥-5/9

回答2:

f(x)=1/3x^3+1/2x^2+2ax
f'(x)=x^2+x+2a>=0时递增
deta=1-8a<0时,即a>=1/8时,xER上都递增,自然在在(2/3,正无穷)上存在单调递增区间
所以a>=1/8时成立。
当deta>0时,即a<1/8时,
x^2+x+2a>=0
x>[-1+根号(1-8a)]/2 or x<[-1-根号(1-8a)]/2
则要求x>3区域要落在x>[-1+根号(1-8a)]/2 内才能保证f(x)在(2/3,正无穷)上存在单调递增区间
即:2/3>=[-1+根号(1-8a)]/2
4/3+1>=根号(1-8a)
49/9>=1-8a
8a<=1-49/9=-40/9
a<=-5/9
又a<1/8时,联立得:a<=-5/9
综上a取值为:a>=1/8 or a<=-5/9

回答3:

f(x)=1/3x³+1/2x²+2ax
f'(x)=x²+x+2a
若f(x)在(2/3,正无穷)上存在单调递增区间,则f'(2/3)≤0
即4/9+2/3+2a≤0
a≤-5/9

回答4:

当a=-2/9时f′(x)在[2/3,+∞)上的最大值为0,
即x∈[2/3,+∞)时f′(x)≤0,
所以f(x)在[2/3,+∞)恒为减函数,不存在增区间.

回答5:

求导,只要在该区间上导数始终大于0.