求下列微分方程的通解:y✀✀=1+(y✀)^2

2024-12-14 14:02:44
推荐回答(2个)
回答1:

dennis_zyp的答案有误,验证如下:y=0.5ln(tan(x+c1))+c2 

y'=1/[sin2(x+c1),1+y'^2必为正

而y''=-2cos2(x+c1)/[sin2(x+c1)]^2可为负

正确答案是:y=c1-lncos(x+c2),见附图

回答2:

令y'=p
则y"=pdp/dy
方程化为:pdp/dy=1+p^2
pdp/(1+p^2)=dy
d(1+p^2)/(1+p^2)=2dy
ln(1+p^2)=2y+c1
1+p^2=ce^(2y)
p=√[ce^(2y)-1]
dy/√[ce^(2y)-1]=dx
令t=√[ce^(2y)-1], 则:y=0.5ln [(t^2+1)/c]
dy=tdt/(t^2+1),代入上式得:
dt/(t^2+1)=dx
arctant=x+c1
t=tan(x+c1)
√[ce^(2y)-1]=tan(x+c1)
ce^(2y)-1=tan(x+c1)
y=0.5ln{[tan(x+c1)+1]/c}=0.5ln(tan(x+c1)+c2