f(x)=cos2x+√3sin2x=2sin(2x+π/6)
所以周期为π
对称轴2x+π/6=kπ+π/2(k是整数)
即x=kπ/2 +π/6 k是整数
单调区间 2kπ≤2x+π/6≤π+2kπ k是整数
即x∈[-π/12+kπ,kπ+5π/12]是单调递减的
5π/12+2kπ≤2x+π/6≤11π/12+2kπ k是整数
即x∈[kπ+5π/12,kπ+11π/12]是单调递增的
x∈[0,π/2], π/6 ≤2x+π/6≤7π/6
f(π/2)min=-1,f(π/6)=2
即:函数f(x)在x∈【0,π/2】的值域[-1,2]
希望你能看懂,你能明白, 望采纳,赞同