26、(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点
为 A (1,0),B (1,﹣5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时, ;
(3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
考点:二次函数综合题。
分析:(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;
(2)①当x=1时,y=1﹣t,求得M的坐标,则可求得∠AMP的度数,
②由S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM,即可求得关于t的二次函数,列方程即可求得t的值;
(3)根据图形,即可直接求得答案.
解答:解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,
再把x=t,y=0代入y=x2+bx,得t2+bt=0,
∵t>0,
∴b=﹣t;
(2)①不变.
如图6,当x=1时,y=1﹣t,故M(1,1﹣t),
∵tan∠AMP=1,
∴∠AMP=45°;
②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM= (t﹣4)(4t﹣16)+ [(4t﹣16)+(t﹣1)]×3﹣ (t﹣1)(t﹣1)= t2﹣ t+6.
解 t2﹣ t+6= ,
得:t1= ,t2= ,
∵4<t<5,
∴t1= 舍去,
∴t= .
(3) <t< .
点评:此题考查了二次函数与点的关系,以及三角形面积的求解方法等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.
提供图片答案供参考: