sina=4/5 兀/2cosb=-5/13 兀sin(a+b)=sinacosb+cosasinb=(4/5)*(-5/13)-(3/5)*(-12/13)=16/65 cos(a-b)=cosacosb+sinasinb==(-3/5)*(-5/13)+(4/5)*(-5/13)=-1/13 希望看的明白
∵α∈(π/2,π),β∈(π,3π/2)∴cosα=-√[1-(sinα)^2]=-√[1-(4/5)^2]=-3/5sinβ=-√[1-(cosβ)^2]=-√[1-(-5/13)^2]=-12/13sin(α+β)=sinαcosβ+cosαsinβ=4/5*(-5/13)+(-3/5)*(-12/13)=16/65cos(α-β)=cosαcosβ+sinαsinβ=(-3/5)*(-5/13)+4/5*(-12/13)=-33/65
sina=4/5兀/2cosb=-5/13 兀sinb=-12/13sin(a+b)=sinacosb+cosasinb=(4/5)*(-5/13)-(3/5)*(-12/13)=16/65 cos(α-β)=cosacosb+sinasinb=33/65望采纳