解:原式={[(x+y)²-(x-y)²]/(x²-y²)﹜×[(y²-x²)/(xy)²]
=[4xy/(x²-y²)]×[(y²-x²)/(xy)²]
=-4/xy
xy=(2+√3)(2-√3)=1
所以原式=-4
(2x^3+ax-5y+b)-(2bx^3-3x+5y-1)
=(2-b)x^3+(a+3)x-10y+b+1
甲同学把x=-2/3 y=2/5 误写为 x=2/3 y=2/5
第一种情况是x^3,x的系数是0
即:a=-3,b=2
第二种情况
代入x=-2/3 y=2/5得
(2-b)(-8/27)+(a+3)(-2/3)-10*2/5+b+1
=-16/27+8/27b-2/3a-1-4+b+1
=35/27b-2/3a-124/27
代入x=2/3 y=2/5得
(2-b)(8/27)+(a+3)(2/3)-10*2/5+b+1
=16/27-8/27b+2/3a+1-4+b+1
=16/27+19/27b+2/3a-2
由题意:
16/27+19/27b+2/3a-2=35/27b-2/3a-124/27
4/3a-16/27b+96/27=0
36a-16b+96=0
9a-4b+24=0
第二种情况当
9a-4b+24=0成立参考资料:如果您的回答是从其他地方引用,请表明出处
x=2+3^0.5;y=2-3^0.5;
((x+y/x-y)-(x-y/x+y))*(1/x^2-1/y^2)= 5.4359
(2+√3+7-4√3 -2+√3-2+√3-7+4√3+2-√3)*(-2√3)*4=-48