cos(x/2)*cos(x/4)...cos(x/2~n)
=cos(x/2)*cos(x/4)...cos(x/2~n)*2^n*sin(x/2^n)/[2^n*sin(x/2^n)]
=sinx/[2^n*sin(x/2^n)]
分母2^n*sin(x/2^n)=x*sin(x/2^n)/(x/2^n)→x,(n→∞),
lim [cos(x/2)*cos(x/4)...cos(x/2~n)]=(sinx)/x,(n趋于无穷).
当x=0 lim [cos(x/2)*cos(x/4)...cos(x/2~n)]=1
当x不等于0 就是百了居士的答案。其实sinx/x在x=0处的极限也是1,不过,为了追求严谨性,还是分开讨论,否则,分子分母上下同时乘以[2^n*sin(x/2^n)] 的合理性就值得怀疑了。
或者说,lim [cos(x/2)*cos(x/4)...cos(x/2~n)]=
0 x等于0
sinx/x x不等于0
把含有无定义点的函数补完整
设S=cos(x/2)*cos(x/4)...cos(x/2~n),
等式两边乘以2*sin(x/2~n),(利用sinx=2sin(x/2)cos(x/2))
从而有
S=sinx/(2^n *sin(x/2^n)),
S=(sinx/x)/[sin(x/2^n)/(x/2^n)]!
则lim S=sinx/x,其中,n趋于无穷!
因为lim[sin(x/2^n)/(x/2^n)]=1,其中,n趋于无穷!
故lim [cos(x/2)*cos(x/4)...cos(x/2~n)]=sinx/x
,其中,n趋于无穷!
同学,你这边n是变量,x是参量吗?如果是这样,那么支持楼上的,极限为0.
lim [cos(x/2)*cos(x/4)...cos(x/2~n)]=lim [cos(x/2)*cos(x/4)...cos(x/2~n)*sin2~n/sinx/2~n]=limsinx/(2~n*sinx/2~n)=1
个人感觉=0吧 一群绝对值<=1的数 一定是越乘越小的