解析:设AB=c,AC=b,BC=a
∵△ABC的面积为8√2,内切圆半径为1
R=S(△ABC)/s (s为半周长)
∴s=8√2==>2s(周长)= 16√2
E,F为AC,BC与圆的切点,连接OE,OF,OC
∵AB=4√2
∴AB=AE+BF==>CE=CF=4√2
OC=√33==>cos(C/2)= 4√66/33==>cosC=2(cos(C/2))^2-1=31/33
由余弦定理c^2=a^2+b^2-2abcosC=32
(a+b)^2=a^2+b^2+2ab=(12√2)^2=288
二式相减得2ab(1+cosC)=256==>ab=66==>a^2+b^2=156
(2CD)^2=a^2+b^2+2abcosC=156+132*31/33=280
∴CD^2=70==>CD=√70