矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。
在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:
1 矩阵的维数是其行向量(或列向量)生成的向量空间的维数;
2 指它的行数与列数 (一般编程人员喜欢这样定义, 因为他们关注的是数组的大小)。
你说的矩阵的秩,其实就是第1种,即矩阵的维数就是矩阵的秩。
把矩阵的秩弄明白了就明白矩阵的维数是什么了。
矩阵的秩就是矩阵中非零子式的最高阶数,简单来说,就是把矩阵进行初等行变换之后有非零数的行数。
扩展资料:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一个无限小的点,没有长度。1维是一条无限长的线,只有长度。2维是一个平面,是由长度和宽度(或部分曲线)组成面积。3维是2维加上高度组成体积。
4维分为时间上和空间上的4维,人们说的4维经常是指关于物体在时间线上的转移。(4维准确来说有两种。四维时空,是指三维空间加一维时间;四维空间,只指四个维度的空间。)四维运动产生了五维。
从广义上讲:维度是事物“有联系”的抽象概念的数量,“有联系”的抽象概念指的是由多个抽象概念联系而成的抽象概念,和任何一个组成它的抽象概念都有联系,组成它的抽象概念的个数就是它变化的维度,如面积。此概念成立的基础是一切事物都有相对联系。
从哲学角度看,人们观察、思考与表述某事物的“思维角度”,简称“维度”。例如,人们观察与思考“月亮”这个事物,可以从月亮的“内容、时间、空间”三个思维角度去描述;也可以从月亮的“载体、能量、信息”三个思维角度去描述。
参考资料:百度百科——矩阵 百度百科——维度
矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。
在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:
1. 矩阵的维数是其行向量(或列向量)生成的向量空间的维数;
2. 指它的行数与列数 (一般编程人员喜欢这样定义, 因为他们关注的是数组的大小)。
你说的矩阵的秩,其实就是第1种,即矩阵的维数就是矩阵的秩。
把矩阵的秩弄明白了就明白矩阵的维数是什么了。
矩阵的秩就是矩阵中非零子式的最高阶数,简单来说,就是把矩阵进行初等行变换之后有非零数的行数。例如,对一个3*5矩阵进行初等行变换,最后变换成形如:
┌ 1 1 1 0 3 ┐
│ 0 0 2 3 0 │
└ 0 0 0 0 0 ┘
这样的阶梯型矩阵后,数数其中非零行的行数就能知道矩阵的秩有多少了。显然,其中第一、二行为非零行,一共有两行,所以秩r=2,也就是原矩阵维数为2。
矩阵不讲维数,维数是线性空间的性质,矩阵的维数是其行向量(或列向量)生成的向量空间的维数;
如果你是想说矩阵的秩另当别论
简单的来讲,看一个矩阵有m行,n列,就称它为m*n矩阵