等差数列{an}中,公差不等于0,若a1,a3,a9成等比数列,则(a1+a3+a9)⼀(a2+a4+ a10)=

2024-11-26 08:17:04
推荐回答(3个)
回答1:

因为a1,a3,a9成等比数列
则a3^2=a1*a9,即(a1+2d)^2=a1*(a1+8d),化简得:a1=d
则(a1+a3+a9)/(a2+a4+ a10)
=(a1+a1+2d+a1+8d)/(a1+d+a1+3d+a1+9d)
=(3a1+10d)/(3a1+13d)
=13d/(16d)
=13/16

回答2:

a3*a3=a1*a9
(a1+2d)(a1+2d)=a1*(a1+8d)
得:a1=d
则:(a1+a3+a9)/(a2+a4+ a10)=13/16

回答3:

a1/a2=a1/a1+d
a2/a9=a1+d/a1+8d
a1/a1+d=a1+d/a1+8d
(a1+d)^2=a1^2+8a1d
a1^2+d^2+2a1d=a1^2+8a1d
6a1=d
a1+a3+a9/a2+a4+a10=a1+a1+2d+a1+8d/a1+d+a1+3d+a1+9d=3a1+10d/3a1+13d=3a1+60a1/
3a1+78a1=63/81=7/9